IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i5d10.1007_s11135-024-01857-2.html
   My bibliography  Save this article

Structural topic modeling as a mixed methods research design: a study on employer size and labor market outcomes for vulnerable groups

Author

Listed:
  • Julie Ulstein

    (Oslo Metropolitan University)

Abstract

Obtaining and maintaining steady employment can be challenging for people from vulnerable groups. Previous research has focused on the relationship between employer size and employment outcomes for these groups, but the findings have been inconsistent. To clarify this relationship, the current study uses structural topic modeling, a mixed methods research design, to disclose and explain factors behind the association between employer size and labor market outcomes for people from vulnerable groups. The data consist of qualitative interview transcripts concerning the hiring and inclusion of people from vulnerable groups. These were quantitized and analyzed using structural topic modeling. The goals were to investigate topical content and prevalence according to employer size, to provide a comprehensive guide for model estimation and interpretation, and to highlight the wide applicability of this method in social science research. Model estimation resulted in a model with five topics: training, practicalities of the inclusion processes, recruitment, contexts of inclusion, and work demands. The analysis revealed that topical prevalence differed between employers according to size. Thus, these estimated topics can provide evidence as to why the association between employer size and labor market outcomes for vulnerable groups varies across studies––different employers highlight different aspects of work inclusion. The article further demonstrates the strengths and limitations of using structural topic modeling as a mixed methods research design.

Suggested Citation

  • Julie Ulstein, 2024. "Structural topic modeling as a mixed methods research design: a study on employer size and labor market outcomes for vulnerable groups," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4331-4351, October.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:5:d:10.1007_s11135-024-01857-2
    DOI: 10.1007/s11135-024-01857-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-024-01857-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-024-01857-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    2. Yuliya Kuznetsova & João Paulo Cerdeira Bento, 2018. "Workplace Adaptations Promoting the Inclusion of Persons with Disabilities in Mainstream Employment: A Case-Study on Employers’ Responses in Norway," Social Inclusion, Cogitatio Press, vol. 6(2), pages 34-45.
    3. Stefano Sbalchiero & Maciej Eder, 2020. "Topic modeling, long texts and the best number of topics. Some Problems and solutions," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1095-1108, August.
    4. Paul van der Aa & Rik van Berkel, 2014. "Innovating job activation by involving employers," International Social Security Review, John Wiley & Sons, vol. 67(2), pages 11-27, April.
    5. Edoardo M. Airoldi & Jonathan M. Bischof, 2016. "Improving and Evaluating Topic Models and Other Models of Text," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1381-1403, October.
    6. Sharma, Anuj & Rana, Nripendra P. & Nunkoo, Robin, 2021. "Fifty years of information management research: A conceptual structure analysis using structural topic modeling," International Journal of Information Management, Elsevier, vol. 58(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    2. Arina Wischnewsky & David‐Jan Jansen & Matthias Neuenkirch, 2021. "Financial stability and the Fed: Evidence from congressional hearings," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1192-1214, July.
    3. Justyna Klejdysz & Robin L. Lumsdaine, 2023. "Shifts in ECB Communication: A Textual Analysis of the Press Conference," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 473-542, June.
    4. Javier De la Hoz-M & Mª José Fernández-Gómez & Susana Mendes, 2021. "LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    5. Puklavec, Žiga & Kogler, Christoph & Stavrova, Olga & Zeelenberg, Marcel, 2023. "What we tweet about when we tweet about taxes: A topic modelling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 1242-1254.
    6. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    7. Federico Maria Ferrara & Jörg S Haas & Andrew Peterson & Thomas Sattler, 2022. "Exports vs. Investment: How Public Discourse Shapes Support for External Imbalances," Post-Print hal-02569351, HAL.
    8. Arsenyan, Jbid & Mirowska, Agata & Piepenbrink, Anke, 2023. "Close encounters with the virtual kind: Defining a human-virtual agent coexistence framework," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    9. Das, Kallol & Patel, Jayesh D. & Sharma, Anuj & Shukla, Yupal, 2023. "Creativity in marketing: Examining the intellectual structure using scientometric analysis and topic modeling," Journal of Business Research, Elsevier, vol. 154(C).
    10. Miethlich, Boris & Oldenburg, Anett G., 2019. "Social Inclusion Drives Business Sales: A Literature Review on the Case of the Employment of Persons With Disabilities," EconStor Conference Papers 200752, ZBW - Leibniz Information Centre for Economics.
    11. Hong Joo Lee & Hoyeon Oh, 2020. "A Study on the Deduction and Diffusion of Promising Artificial Intelligence Technology for Sustainable Industrial Development," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    12. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    13. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    14. Stefano Sbalchiero & Maciej Eder, 2020. "Topic modeling, long texts and the best number of topics. Some Problems and solutions," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1095-1108, August.
    15. Li Tang & Jennifer Kuzma & Xi Zhang & Xinyu Song & Yin Li & Hongxu Liu & Guangyuan Hu, 2023. "Synthetic biology and governance research in China: a 40-year evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5293-5310, September.
    16. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    17. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Daoud, Adel & Kohl, Sebastian, 2016. "How much do sociologists write about economic topics? Using big data to test some conventional views in economic sociology, 1890 to 2014," MPIfG Discussion Paper 16/7, Max Planck Institute for the Study of Societies.
    19. Cardinale, Roberto & Cardinale, Ivano & Zupic, Ivan, 2024. "The EU's vulnerability to gas price and supply shocks: The role of mismatches between policy beliefs and changing international gas markets," Energy Economics, Elsevier, vol. 131(C).
    20. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:5:d:10.1007_s11135-024-01857-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.