IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v53y2019i4d10.1007_s11135-019-00845-1.html
   My bibliography  Save this article

Estimation of voter transitions and the ecological fallacy

Author

Listed:
  • Antonio Forcina

    (Dipartimento di Economia)

  • Davide Pellegrino

    (Università degli Studi di Torino: Politecnico di Torino)

Abstract

This paper attempts an investigation into the features of ecological fallacy in the context of estimation of voter transitions between two elections. After reviewing some theoretical findings from a statistical point of view, we discuss two tools for checking whether bias is present: (1) fitting models with covariates; (2) comparing the standard errors of transition probabilities computed under ideal conditions against those based on bootstrap methods. Concerning the effect of covariates, we describe two different data generating mechanisms, depending on whether voting decisions are affected by variables measured at the (1) aggregate or (2) the individual level. By theoretical arguments and empirical evidence, we show that, while modelling the effect of covariates removes bias in the first case, it may fail in the second because only aggregate level covariates are usually available. Our investigation relies on the analysis of real and artificial data sets: the latter are obtained by a computer software which mimics voting behaviour and is such that, artificial electoral data with designed size and direction of ecological bias can be produced. An application to a recent election in the city of Turin is also used to illustrate our methodology and findings.

Suggested Citation

  • Antonio Forcina & Davide Pellegrino, 2019. "Estimation of voter transitions and the ecological fallacy," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1859-1874, July.
  • Handle: RePEc:spr:qualqt:v:53:y:2019:i:4:d:10.1007_s11135-019-00845-1
    DOI: 10.1007/s11135-019-00845-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-019-00845-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-019-00845-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carolina Plescia & Lorenzo De Sio, 2018. "An evaluation of the performance and suitability of R × C methods for ecological inference with known true values," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 669-683, March.
    2. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    3. Michela Gnaldi & Venera Tomaselli & Antonio Forcina, 2018. "Ecological Fallacy and Covariates: New Insights based on Multilevel Modelling of Individual Data," International Statistical Review, International Statistical Institute, vol. 86(1), pages 119-135, April.
    4. D. James Greiner & Kevin M. Quinn, 2009. "R×C ecological inference: bounds, correlations, flexibility and transparency of assumptions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 67-81, January.
    5. Luana Russo, 2014. "Estimating floating voters: a comparison between the ecological inference and the survey methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(3), pages 1667-1683, May.
    6. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    7. A. Forcina & M. Gnaldi & B. Bracalente, 2012. "A revised Brown and Payne model of voting behaviour applied to the 2009 elections in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 109-119, March.
    8. R. L. Chambers & D. G. Steel, 2001. "Simple methods for ecological inference in 2×2 tables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 175-192.
    9. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-425, July.
    10. Ori Rosen & Wenxin Jiang & Gary King & Martin A. Tanner, 2001. "Bayesian and Frequentist Inference for Ecological Inference: The R×C Case," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(2), pages 134-156, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Pablo Sandoval & Silvia Ojeda, 2023. "Estimation of electoral volatility parameters employing ecological inference methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 405-426, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Plescia & Lorenzo De Sio, 2018. "An evaluation of the performance and suitability of R × C methods for ecological inference with known true values," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 669-683, March.
    2. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    3. Puig, Xavier & Ginebra, Josep, 2014. "A cluster analysis of vote transitions," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 328-344.
    4. Rob Eisinga, 2009. "The beta‐binomial convolution model for 2×2 tables with missing cell counts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 24-42, February.
    5. Pablo Sandoval & Silvia Ojeda, 2023. "Estimation of electoral volatility parameters employing ecological inference methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 405-426, February.
    6. D. James Greiner & Kevin M. Quinn, 2009. "R×C ecological inference: bounds, correlations, flexibility and transparency of assumptions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 67-81, January.
    7. Zax Jeffrey S., 2012. "Single Regression Estimates of Voting Choices When Turnout is Unknown," Statistics, Politics and Policy, De Gruyter, vol. 4(1), pages 1-22, October.
    8. Roberto Colombi & Antonio Forcina, 2016. "Latent class models for ecological inference on voters transitions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 501-517, November.
    9. Beh, Eric J., 2010. "The aggregate association index," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1570-1580, June.
    10. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    11. Shuai Shao & Göran Kauermann, 2020. "Understanding price elasticity for airline ancillary services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 74-82, February.
    12. Sebastien J.‐P. A. Haneuse & And Jonathan C. Wakefield, 2008. "The combination of ecological and case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 73-93, February.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Nathan Kallus & Xiaojie Mao & Angela Zhou, 2022. "Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination," Management Science, INFORMS, vol. 68(3), pages 1959-1981, March.
    15. Arie ten Cate, 2014. "Maximum likelihood estimation of the Markov chain model with macro data and the ecological inference model," CPB Discussion Paper 284.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    17. Xiaohui Chang & Rasmus Waagepetersen & Herbert Yu & Xiaomei Ma & Theodore R. Holford & Rong Wang & Yongtao Guan, 2015. "Disease risk estimation by combining case–control data with aggregated information on the population at risk," Biometrics, The International Biometric Society, vol. 71(1), pages 114-121, March.
    18. Sebastien J-P. A. Haneuse & Jonathan C. Wakefield, 2007. "Hierarchical Models for Combining Ecological and Case–Control Data," Biometrics, The International Biometric Society, vol. 63(1), pages 128-136, March.
    19. Averi Chakrabarti & Karen A Grépin & Stéphane Helleringer, 2019. "The impact of supplementary immunization activities on routine vaccination coverage: An instrumental variable analysis in five low-income countries," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-11, February.
    20. Harold Alderman & John Hoddinott & Bill Kinsey, 2006. "Long term consequences of early childhood malnutrition," Oxford Economic Papers, Oxford University Press, vol. 58(3), pages 450-474, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:53:y:2019:i:4:d:10.1007_s11135-019-00845-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.