IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i1p114-121.html
   My bibliography  Save this article

Disease risk estimation by combining case–control data with aggregated information on the population at risk

Author

Listed:
  • Xiaohui Chang
  • Rasmus Waagepetersen
  • Herbert Yu
  • Xiaomei Ma
  • Theodore R. Holford
  • Rong Wang
  • Yongtao Guan

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiaohui Chang & Rasmus Waagepetersen & Herbert Yu & Xiaomei Ma & Theodore R. Holford & Rong Wang & Yongtao Guan, 2015. "Disease risk estimation by combining case–control data with aggregated information on the population at risk," Biometrics, The International Biometric Society, vol. 71(1), pages 114-121, March.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:114-121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12256
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    2. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-425, July.
    3. Diggle, Peter J. & Guan, Yongtao & Hart, Anthony C. & Paize, Fauzia & Stanton, Michelle, 2010. "Estimating Individual-Level Risk in Spatial Epidemiology Using Spatially Aggregated Information on the Population at Risk," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1394-1402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    3. Shuai Shao & Göran Kauermann, 2020. "Understanding price elasticity for airline ancillary services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 74-82, February.
    4. Carolina Plescia & Lorenzo De Sio, 2018. "An evaluation of the performance and suitability of R × C methods for ecological inference with known true values," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 669-683, March.
    5. Nathan Kallus & Xiaojie Mao & Angela Zhou, 2022. "Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination," Management Science, INFORMS, vol. 68(3), pages 1959-1981, March.
    6. D. James Greiner & Kevin M. Quinn, 2009. "R×C ecological inference: bounds, correlations, flexibility and transparency of assumptions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 67-81, January.
    7. Puig, Xavier & Ginebra, Josep, 2014. "A cluster analysis of vote transitions," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 328-344.
    8. Rob Eisinga, 2009. "The beta‐binomial convolution model for 2×2 tables with missing cell counts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 24-42, February.
    9. Arie ten Cate, 2014. "Maximum likelihood estimation of the Markov chain model with macro data and the ecological inference model," CPB Discussion Paper 284.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Antonio Forcina & Davide Pellegrino, 2019. "Estimation of voter transitions and the ecological fallacy," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1859-1874, July.
    11. Hui Huang & Xiaomei Ma & Rasmus Waagepetersen & Theodore R. Holford & Rong Wang & Harvey Risch & Lloyd Mueller & Yongtao Guan, 2014. "A New Estimation Approach for Combining Epidemiological Data From Multiple Sources," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 11-23, March.
    12. Beh, Eric J., 2010. "The aggregate association index," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1570-1580, June.
    13. Sebastien J.‐P. A. Haneuse & And Jonathan C. Wakefield, 2008. "The combination of ecological and case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 73-93, February.
    14. Sebastien J-P. A. Haneuse & Jonathan C. Wakefield, 2007. "Hierarchical Models for Combining Ecological and Case–Control Data," Biometrics, The International Biometric Society, vol. 63(1), pages 128-136, March.
    15. Hugo Storm & Thomas Heckelei & Ron C. Mittelhammer, 2016. "Bayesian estimation of non-stationary Markov models combining micro and macro data," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 303-329.
    16. E. Smoot & S. Haneuse, 2015. "On the analysis of hybrid designs that combine group- and individual-level data," Biometrics, The International Biometric Society, vol. 71(1), pages 227-236, March.
    17. van Dijk, Bram & Paap, Richard, 2008. "Explaining individual response using aggregated data," Journal of Econometrics, Elsevier, vol. 146(1), pages 1-9, September.
    18. Zax Jeffrey S., 2012. "Single Regression Estimates of Voting Choices When Turnout is Unknown," Statistics, Politics and Policy, De Gruyter, vol. 4(1), pages 1-22, October.
    19. Roberto Colombi & Antonio Forcina, 2016. "Latent class models for ecological inference on voters transitions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 501-517, November.
    20. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:114-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.