IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v86y2021i4d10.1007_s11336-021-09786-x.html
   My bibliography  Save this article

A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test

Author

Listed:
  • José H. Lozano

    (Universidad Autónoma de Madrid)

  • Javier Revuelta

    (Universidad Autónoma de Madrid)

Abstract

The present paper introduces a new explanatory item response model to account for the learning that takes place during a psychometric test due to the repeated use of the operations involved in the items. The proposed model is an extension of the operation-specific learning model (Fischer and Formann in Appl Psychol Meas 6:397–416, 1982; Scheiblechner in Z für Exp Angew Psychol 19:476–506, 1972; Spada in Spada and Kempf (eds.) Structural models of thinking and learning, Huber, Bern, Germany, pp 227–262, 1977). The paper discusses special cases of the model, which, together with the general formulation, differ in the type of response in which the model states that learning occurs: (1) correct and incorrect responses equally (non-contingent learning); (2) correct responses only (contingent learning); and (3) correct and incorrect responses to a different extent (differential contingent learning). A Bayesian framework is adopted for model estimation and evaluation. A simulation study is conducted to examine the performance of the estimation and evaluation methods in recovering the true parameters and selecting the true model. Finally, an empirical study is presented to illustrate the applicability of the model to detect learning effects using real data.

Suggested Citation

  • José H. Lozano & Javier Revuelta, 2021. "A Bayesian Generalized Explanatory Item Response Model to Account for Learning During the Test," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 994-1015, December.
  • Handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09786-x
    DOI: 10.1007/s11336-021-09786-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09786-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09786-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Gerhard Fischer, 1983. "Logistic latent trait models with linear constraints," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 3-26, March.
    3. Lozano, José H. & Revuelta, Javier, 2020. "Investigating operation-specific learning effects in the Raven's Advanced Progressive Matrices: A linear logistic test modeling approach," Intelligence, Elsevier, vol. 82(C).
    4. N. Verhelst & C. Glas, 1993. "A dynamic generalization of the Rasch model," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 395-415, September.
    5. Susan Embretson, 1991. "A multidimensional latent trait model for measuring learning and change," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 495-515, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhard Fischer, 1995. "Some neglected problems in IRT," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 459-487, December.
    2. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    3. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    4. Jose Pina-Sánchez & John Paul Gosling, 2020. "Tackling selection bias in sentencing data analysis: a new approach based on a scale of severity," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 1047-1073, June.
    5. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    6. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    7. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    8. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    9. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    10. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    11. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    12. Susan Embretson, 1999. "Generating items during testing: Psychometric issues and models," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 407-433, December.
    13. Matthias Trendtel & Alexander Robitzsch, 2021. "A Bayesian Item Response Model for Examining Item Position Effects in Complex Survey Data," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 34-57, February.
    14. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    15. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    16. Jared Coopersmith & Thomas D. Cook & Jelena Zurovac & Duncan Chaplin & Lauren V. Forrow, 2022. "Internal And External Validity Of The Comparative Interrupted Time‐Series Design: A Meta‐Analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(1), pages 252-277, January.
    17. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    18. Laura Battaglia & Timothy Christensen & Stephen Hansen & Szymon Sacher, 2024. "Inference for Regression with Variables Generated from Unstructured Data," Papers 2402.15585, arXiv.org, revised May 2024.
    19. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    20. Matthias Davier & Xueli Xu & Claus Carstensen, 2011. "Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 318-336, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:86:y:2021:i:4:d:10.1007_s11336-021-09786-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.