IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i3p603-627.html
   My bibliography  Save this article

Intrinsic Gaussian processes on complex constrained domains

Author

Listed:
  • Mu Niu
  • Pokman Cheung
  • Lizhen Lin
  • Zhenwen Dai
  • Neil Lawrence
  • David Dunson

Abstract

We propose a class of intrinsic Gaussian processes (GPs) for interpolation, regression and classification on manifolds with a primary focus on complex constrained domains or irregularly shaped spaces arising as subsets or submanifolds of R, R2, R3 and beyond. For example, intrinsic GPs can accommodate spatial domains arising as complex subsets of Euclidean space. Intrinsic GPs respect the potentially complex boundary or interior conditions as well as the intrinsic geometry of the spaces. The key novelty of the approach proposed is to utilize the relationship between heat kernels and the transition density of Brownian motion on manifolds for constructing and approximating valid and computationally feasible covariance kernels. This enables intrinsic GPs to be practically applied in great generality, whereas existing approaches for smoothing on constrained domains are limited to simple special cases. The broad utilities of the intrinsic GP approach are illustrated through simulation studies and data examples.

Suggested Citation

  • Mu Niu & Pokman Cheung & Lizhen Lin & Zhenwen Dai & Neil Lawrence & David Dunson, 2019. "Intrinsic Gaussian processes on complex constrained domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 603-627, July.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:603-627
    DOI: 10.1111/rssb.12320
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12320
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    2. P. E. Kloeden & Eckhard Platen, 1992. "Higher-order implicit strong numerical schemes for stochastic differential equations," Published Paper Series 1992-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    4. Guinness, Joseph & Fuentes, Montserrat, 2016. "Isotropic covariance functions on spheres: Some properties and modeling considerations," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 143-152.
    5. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    6. Simon N. Wood & Mark V. Bravington & Sharon L. Hedley, 2008. "Soap film smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 931-955, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Whitney K. & Chung, Yu-Min & Wang, Yu-Bo & Mandel, Jeff E. & Wu, Hau-Tieng, 2022. "Airflow recovery from thoracic and abdominal movements using synchrosqueezing transform and locally stationary Gaussian process regression," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    3. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    4. Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
    5. David B. Dunson & Hau‐Tieng Wu & Nan Wu, 2022. "Graph based Gaussian processes on restricted domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 414-439, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    2. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    3. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    4. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
    5. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.
    7. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    8. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Lan Zhou & Huijun Pan, 2014. "Smoothing noisy data for irregular regions using penalized bivariate splines on triangulations," Computational Statistics, Springer, vol. 29(1), pages 263-281, February.
    10. Smirnova, Ekaterina & Khormali, Omid & Egan, Joel M., 2019. "Functional analysis of spatial aggregation regions of Jeffrey pine beetle-attack within the Lake Tahoe Basin," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 57-62.
    11. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    12. Nguyen, Hien D. & McLachlan, Geoffrey J. & Wood, Ian A., 2016. "Mixtures of spatial spline regressions for clustering and classification," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 76-85.
    13. Barry, Ronald P. & McIntyre, Julie & Bernard, Jordan, 2024. "A geostatistical model based on random walks to krige regions with irregular boundaries and holes," Ecological Modelling, Elsevier, vol. 491(C).
    14. Eleonora Arnone & Luca Negri & Ferruccio Panzica & Laura M. Sangalli, 2023. "Analyzing data in complicated 3D domains: Smoothing, semiparametric regression, and functional principal component analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 3510-3521, December.
    15. Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
    16. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    17. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    18. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    19. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    20. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:603-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.