IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3446-3457.html
   My bibliography  Save this article

Stepwise estimation of common principal components

Author

Listed:
  • Trendafilov, Nickolay T.

Abstract

The standard common principal components (CPCs) may not always be useful for simultaneous dimensionality reduction in k groups. Moreover, the original FG algorithm finds the CPCs in arbitrary order, which does not reflect their importance with respect to the explained variance. A possible alternative is to find an approximate common subspace for all k groups. A new stepwise estimation procedure for obtaining CPCs is proposed, which imitates standard PCA. The stepwise CPCs facilitate simultaneous dimensionality reduction, as their variances are decreasing at least approximately in all k groups. Thus, they can be a better alternative for dimensionality reduction than the standard CPCs. The stepwise CPCs are found sequentially by a very simple algorithm, based on the well-known power method for a single covariance/correlation matrix. Numerical illustrations on well-known data are considered.

Suggested Citation

  • Trendafilov, Nickolay T., 2010. "Stepwise estimation of common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3446-3457, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3446-3457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00112-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schyns, M. & Haesbroeck, G. & Critchley, F., 2010. "RelaxMCD: Smooth optimisation for the Minimum Covariance Determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 843-857, April.
    2. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    3. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    4. W. J. Krzanowski, 1984. "Principal Component Analysis in the Presence of Group Structure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 164-168, June.
    5. Trendafilov, Nickolay T. & Jolliffe, Ian T., 2006. "Projected gradient approach to the numerical solution of the SCoTLASS," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 242-253, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles K Fisher & Thierry Mora & Aleksandra M Walczak, 2017. "Variable habitat conditions drive species covariation in the human microbiota," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-18, April.
    2. Kyusoon Kim & Hee‐Seok Oh & Minsu Park, 2023. "Principal component analysis for river network data: Use of spatiotemporal correlation and heterogeneous covariance structure," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    3. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    4. Fei Gu & Hao Wu, 2016. "Raw Data Maximum Likelihood Estimation for Common Principal Component Models: A State Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 751-773, September.
    5. Qi Guo & Aurea Grané & Irene Albarrán, 2023. "A Global Indicator to Track Well-Being in the Silver and Golden Age," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(3), pages 1057-1086, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    2. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    3. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    4. Trendafilov, Nickolay T. & Jolliffe, Ian T., 2007. "DALASS: Variable selection in discriminant analysis via the LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3718-3736, May.
    5. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    7. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    8. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    9. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    10. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    12. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    13. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    14. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    15. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    16. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    17. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    18. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    19. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    20. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3446-3457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.