IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i2d10.1007_s11336-017-9553-1.html
   My bibliography  Save this article

Continuous Online Item Calibration: Parameter Recovery and Item Utilization

Author

Listed:
  • Hao Ren

    (Pacific Metrics)

  • Wim J. van der Linden

    (Pacific Metrics)

  • Qi Diao

    (Pacific Metrics)

Abstract

Parameter recovery and item utilization were investigated for different designs for online test item calibration. The design was adaptive in a double sense: it assumed both adaptive testing of examinees from an operational pool of previously calibrated items and adaptive assignment of field-test items to the examinees. Four criteria of optimality for the assignment of the field-test items were used, each of them based on the information in the posterior distributions of the examinee’s ability parameter during adaptive testing as well as the sequentially updated posterior distributions of the field-test item parameters. In addition, different stopping rules based on target values for the posterior standard deviations of the field-test parameters and the size of the calibration sample were used. The impact of each of the criteria and stopping rules on the statistical efficiency of the estimates of the field-test parameters and on the time spent by the items in the calibration procedure was investigated. Recommendations as to the practical use of the designs are given.

Suggested Citation

  • Hao Ren & Wim J. van der Linden & Qi Diao, 2017. "Continuous Online Item Calibration: Parameter Recovery and Item Utilization," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 498-522, June.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9553-1
    DOI: 10.1007/s11336-017-9553-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9553-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9553-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martijn Berger, 1992. "Sequential sampling designs for the two-parameter item response theory model," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 521-538, December.
    2. Martha Stocking, 1990. "Specifying optimum examinees for item parameter estimation in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 461-475, September.
    3. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    4. Douglas Jones & Zhiying Jin, 1994. "Optimal sequential designs for on-line item estimation," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 59-75, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    2. Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    4. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    5. Wim J. van der Linden & Bingnan Jiang, 2020. "A Shadow-Test Approach to Adaptive Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 301-321, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    2. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    3. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    4. Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Yuan-chin Chang & Hung-Yi Lu, 2010. "Online Calibration Via Variable Length Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 140-157, March.
    6. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    7. Yuan-chin Chang, 2011. "Sequential estimation in generalized linear models when covariates are subject to errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 93-120, January.
    8. Ping Chen & Chun Wang, 2016. "A New Online Calibration Method for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 674-701, September.
    9. Wim J. van der Linden & Bingnan Jiang, 2020. "A Shadow-Test Approach to Adaptive Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 301-321, June.
    10. Douglas Jones & Zhiying Jin, 1994. "Optimal sequential designs for on-line item estimation," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 59-75, March.
    11. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    12. Martijn Berger, 1992. "Sequential sampling designs for the two-parameter item response theory model," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 521-538, December.
    13. Wim J. van der Linden & Hao Ren, 2020. "A Fast and Simple Algorithm for Bayesian Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 58-85, February.
    14. Martijn Berger & C. Joy King & Weng Wong, 2000. "Minimax d-optimal designs for item response theory models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 377-390, September.
    15. Ellen Timminga, 1995. "Optimum examinee samples for item parameter estimation in item response theory: A multi-objective programming approach," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 137-154, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-017-9553-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.