A Shadow-Test Approach to Adaptive Item Calibration
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-020-09703-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
- Wim J. van der Linden & Hao Ren, 2020. "A Fast and Simple Algorithm for Bayesian Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 58-85, February.
- Hao Ren & Wim J. van der Linden & Qi Diao, 2017. "Continuous Online Item Calibration: Parameter Recovery and Item Utilization," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 498-522, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
- Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
- Frank Miller & Ellinor Fackle-Fornius, 2024. "Parallel Optimal Calibration of Mixed-Format Items for Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 903-928, September.
- Hao Ren & Wim J. van der Linden & Qi Diao, 2017. "Continuous Online Item Calibration: Parameter Recovery and Item Utilization," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 498-522, June.
- Wim J. van der Linden & Hao Ren, 2020. "A Fast and Simple Algorithm for Bayesian Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 58-85, February.
- Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
More about this item
Keywords
adaptive testing; Bayesian $$D_{mathrm{s}}$$ D s -optimality; Gibbs sampling; item calibration; item response models; MCMC algorithm; shadow-test approach;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:2:d:10.1007_s11336-020-09703-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.