IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v81y2016i2d10.1007_s11336-016-9497-x.html
   My bibliography  Save this article

What can we learn from Plausible Values?

Author

Listed:
  • Maarten Marsman

    (University of Amsterdam
    Cito)

  • Gunter Maris

    (University of Amsterdam
    Cito)

  • Timo Bechger

    (Cito)

  • Cees Glas

    (University of Twente)

Abstract

In this paper, we show that the marginal distribution of plausible values is a consistent estimator of the true latent variable distribution, and, furthermore, that convergence is monotone in an embedding in which the number of items tends to infinity. We use this result to clarify some of the misconceptions that exist about plausible values, and also show how they can be used in the analyses of educational surveys.

Suggested Citation

  • Maarten Marsman & Gunter Maris & Timo Bechger & Cees Glas, 2016. "What can we learn from Plausible Values?," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 274-289, June.
  • Handle: RePEc:spr:psycho:v:81:y:2016:i:2:d:10.1007_s11336-016-9497-x
    DOI: 10.1007/s11336-016-9497-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9497-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9497-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Mislevy, 1991. "Randomization-based inference about latent variables from complex samples," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 177-196, June.
    2. Svend Kreiner & Karl Christensen, 2014. "Analyses of Model Fit and Robustness. A New Look at the PISA Scaling Model Underlying Ranking of Countries According to Reading Literacy," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 210-231, April.
    3. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    4. Hua-Hua Chang & William Stout, 1993. "The asymptotic posterior normality of the latent trait in an IRT model," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 37-52, March.
    5. Lynne Schofield & Brian Junker & Lowell Taylor & Dan Black, 2015. "Predictive Inference Using Latent Variables with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 727-747, September.
    6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    7. Thomas Warm, 1989. "Weighted likelihood estimation of ability in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 427-450, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oberrauch, Luis & Kaiser, Tim, 2020. "Economic competence in early secondary school: Evidence from a large-scale assessment in Germany," International Review of Economics Education, Elsevier, vol. 35(C).
    2. Robert J. Zwitser & S. Sjoerd F. Glaser & Gunter Maris, 2017. "Monitoring Countries in a Changing World: A New Look at DIF in International Surveys," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 210-232, March.
    3. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    4. Juan Aparicio & Jose M. Cordero & Lidia Ortiz, 2021. "Efficiency Analysis with Educational Data: How to Deal with Plausible Values from International Large-Scale Assessments," Mathematics, MDPI, vol. 9(13), pages 1-16, July.
    5. Kaiser, Tim & Oberrauch, Luis, 2021. "Economic education at the expense of indoctrination? Evidence from Germany," EconStor Preprints 245801, ZBW - Leibniz Information Centre for Economics.
    6. Mark D. Flood & Dror Y. Kenett & Robin L. Lumsdaine & Jonathan J. Simon, 2017. "The Complexity of Bank Holding Companies: A New Measurement Approach," Working Papers 17-03, Office of Financial Research, US Department of the Treasury.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Jan Hannig & Abhishek Pal Majumder, 2019. "Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 701-718, September.
    2. Sandip Sinharay, 2015. "The Asymptotic Distribution of Ability Estimates," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 511-528, October.
    3. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2021. "On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures," Journal of Educational and Behavioral Statistics, , vol. 46(4), pages 430-465, August.
    4. Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.
    5. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    6. Laura Zieger & John Jerrim & Jake Anders & Nikki Shure, 2020. "Conditioning: How background variables can influence PISA scores," CEPEO Working Paper Series 20-09, UCL Centre for Education Policy and Equalising Opportunities, revised Apr 2020.
    7. Lynne Schofield & Brian Junker & Lowell Taylor & Dan Black, 2015. "Predictive Inference Using Latent Variables with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 727-747, September.
    8. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    9. Carmen Köhler & Alexander Robitzsch & Johannes Hartig, 2020. "A Bias-Corrected RMSD Item Fit Statistic: An Evaluation and Comparison to Alternatives," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 251-273, June.
    10. Ying Cheng & Cheng Liu & John Behrens, 2015. "Standard Error of Ability Estimates and the Classification Accuracy and Consistency of Binary Decisions," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 645-664, September.
    11. Chun Wang & Gongjun Xu & Xue Zhang, 2019. "Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 673-700, September.
    12. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    13. Brian Jacob & Jesse Rothstein, 2016. "The Measurement of Student Ability in Modern Assessment Systems," Journal of Economic Perspectives, American Economic Association, vol. 30(3), pages 85-108, Summer.
    14. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    15. Mia J. K. Kornely & Maria Kateri, 2022. "Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1146-1172, September.
    16. Li Cai & Carrie R. Houts, 2021. "Longitudinal Analysis of Patient-Reported Outcomes in Clinical Trials: Applications of Multilevel and Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 754-777, September.
    17. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    18. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    20. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:2:d:10.1007_s11336-016-9497-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.