IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i3d10.1007_s11336-021-09838-2.html
   My bibliography  Save this article

Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model

Author

Listed:
  • Mia J. K. Kornely

    (RWTH Aachen University)

  • Maria Kateri

    (RWTH Aachen University)

Abstract

The asymptotic posterior normality (APN) of the latent variable vector in an item response theory (IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broad class of latent trait models for binary items. Under the same setup, they also showed the consistency of the latent trait’s maximum likelihood estimator (MLE). Since then, several modeling approaches have been developed that consider multivariate latent traits and assume their APN, a conjecture which has not been proved so far. We fill this theoretical gap by extending the results of Chang and Stout for multivariate latent traits. Further, we discuss the existence and consistency of MLEs, maximum a-posteriori and expected a-posteriori estimators for the latent traits under the same broad class of latent trait models.

Suggested Citation

  • Mia J. K. Kornely & Maria Kateri, 2022. "Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1146-1172, September.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09838-2
    DOI: 10.1007/s11336-021-09838-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09838-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09838-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    2. David Hessen, 2012. "Fitting and Testing Conditional Multinormal Partial Credit Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 693-709, October.
    3. Frederic Lord, 1983. "Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 233-245, June.
    4. Rizopoulos, Dimitris, 2006. "ltm: An R Package for Latent Variable Modeling and Item Response Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i05).
    5. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    6. Hua-Hua Chang & William Stout, 1993. "The asymptotic posterior normality of the latent trait in an IRT model," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 37-52, March.
    7. Anderson, Carolyn J. & Li, Zhushan & Vermunt, Jeroen K., 2007. "Estimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i06).
    8. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    9. Paul Holland, 1990. "The Dutch Identity: A new tool for the study of item response models," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 5-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    2. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    3. Sandip Sinharay, 2015. "The Asymptotic Distribution of Ability Estimates," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 511-528, October.
    4. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    5. Gunter Maris & Timo Bechger & Ernesto Martin, 2015. "A Gibbs Sampler for the (Extended) Marginal Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 859-879, December.
    6. Carolyn Anderson, 2013. "Multidimensional Item Response Theory Models with Collateral Information as Poisson Regression Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 276-303, July.
    7. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    8. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    9. Xiang Liu & Zhuangzhuang Han & Matthew S. Johnson, 2018. "The UMP Exact Test and the Confidence Interval for Person Parameters in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 182-202, March.
    10. Yang Liu & Jan Hannig & Abhishek Pal Majumder, 2019. "Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 701-718, September.
    11. Carolyn Anderson & Hsiu-Ting Yu, 2007. "Log-Multiplicative Association Models as Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 5-23, March.
    12. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    13. Ying Cheng & Cheng Liu & John Behrens, 2015. "Standard Error of Ability Estimates and the Classification Accuracy and Consistency of Binary Decisions," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 645-664, September.
    14. Hua-Hua Chang, 2015. "Psychometrics Behind Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 1-20, March.
    15. William Stout, 2002. "Psychometrics: From practice to theory and back," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 485-518, December.
    16. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    17. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    18. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    19. Chengyu Cui & Chun Wang & Gongjun Xu, 2024. "Variational Estimation for Multidimensional Generalized Partial Credit Model," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 929-957, September.
    20. Cagnone, Silvia & Bartolucci, Francesco, 2013. "Adaptive quadrature for likelihood inference on dynamic latent variable models for time-series and panel data," MPRA Paper 51037, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:3:d:10.1007_s11336-021-09838-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.