IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i1p65-84.html
   My bibliography  Save this article

Conditional Statistical Inference with Multistage Testing Designs

Author

Listed:
  • Robert Zwitser
  • Gunter Maris

Abstract

In this paper it is demonstrated how statistical inference from multistage test designs can be made based on the conditional likelihood. Special attention is given to parameter estimation, as well as the evaluation of model fit. Two reasons are provided why the fit of simple measurement models is expected to be better in adaptive designs, compared to linear designs: more parameters are available for the same number of observations; and undesirable response behavior, like slipping and guessing, might be avoided owing to a better match between item difficulty and examinee proficiency. The results are illustrated with simulated data, as well as with real data. Copyright The Psychometric Society 2015

Suggested Citation

  • Robert Zwitser & Gunter Maris, 2015. "Conditional Statistical Inference with Multistage Testing Designs," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 65-84, March.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:1:p:65-84
    DOI: 10.1007/s11336-013-9369-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9369-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9369-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Frederic Lord, 1971. "A theoretical study of two-stage testing," Psychometrika, Springer;The Psychometric Society, vol. 36(3), pages 227-242, September.
    4. Thomas Warm, 1989. "Weighted likelihood estimation of ability in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 427-450, September.
    5. Erling Andersen, 1973. "A goodness of fit test for the rasch model," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 123-140, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    2. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    2. Georg Gittler & Gerhard Fischer, 2011. "IRT-Based Measurement of Short-Term Changes of Ability, With an Application to Assessing the “Mozart Effectâ€," Journal of Educational and Behavioral Statistics, , vol. 36(1), pages 33-75, February.
    3. Haruhiko Ogasawara, 2013. "Asymptotic properties of the Bayes modal estimators of item parameters in item response theory," Computational Statistics, Springer, vol. 28(6), pages 2559-2583, December.
    4. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    5. David J. Hessen, 2023. "Fitting and Testing Log-Linear Subpopulation Models with Known Support," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 917-939, September.
    6. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    7. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    8. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    9. Ogasawara, Haruhiko, 2013. "Asymptotic cumulants of ability estimators using fallible item parameters," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 144-162.
    10. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    11. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    12. Clemens Draxler, 2010. "Sample Size Determination for Rasch Model Tests," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 708-724, December.
    13. Fumiko Samejima, 1997. "Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 471-493, December.
    14. Wenjia Wang & Mickaël Guedj & Viviane Bertrand & Julie Foucquier & Elisabeth Jouve & Daniel Commenges & Cécile Proust-Lima & Niall P Murphy & Olivier Blin & Laurent Magy & Daniel Cohen & Shahram Attar, 2017. "A Rasch Analysis of the Charcot-Marie-Tooth Neuropathy Score (CMTNS) in a Cohort of Charcot-Marie-Tooth Type 1A Patients," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    15. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2021. "On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures," Journal of Educational and Behavioral Statistics, , vol. 46(4), pages 430-465, August.
    16. Clemens Draxler & Andreas Kurz & Can Gürer & Jan Philipp Nolte, 2024. "An Improved Inferential Procedure to Evaluate Item Discriminations in a Conditional Maximum Likelihood Framework," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 403-430, June.
    17. Sara Fernandes & Guillaume Fond & Xavier Zendjidjian & Pierre Michel & Karine Baumstarck & Christophe Lançon & Ludovic Samalin & Pierre-Michel Llorca & Magali Coldefy & Pascal Auquier & Laurent Boyer , 2022. "Development and Calibration of the PREMIUM Item Bank for Measuring Respect and Dignity for Patients with Severe Mental Illness," Post-Print hal-03649277, HAL.
    18. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    19. Jürgen M. Pelikan & Thomas Link & Christa Straßmayr & Karin Waldherr & Tobias Alfers & Henrik Bøggild & Robert Griebler & Maria Lopatina & Dominika Mikšová & Marie Germund Nielsen & Sandra Peer & Mitj, 2022. "Measuring Comprehensive, General Health Literacy in the General Adult Population: The Development and Validation of the HLS 19 -Q12 Instrument in Seventeen Countries," IJERPH, MDPI, vol. 19(21), pages 1-31, October.
    20. Ogasawara, Haruhiko, 2013. "Asymptotic properties of the Bayes and pseudo Bayes estimators of ability in item response theory," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 359-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:1:p:65-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.