IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v74y2009i1p83-96.html
   My bibliography  Save this article

Recovering a Probabilistic Knowledge Structure by Constraining its Parameter Space

Author

Listed:
  • Luca Stefanutti
  • Egidio Robusto

Abstract

No abstract is available for this item.

Suggested Citation

  • Luca Stefanutti & Egidio Robusto, 2009. "Recovering a Probabilistic Knowledge Structure by Constraining its Parameter Space," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 83-96, March.
  • Handle: RePEc:spr:psycho:v:74:y:2009:i:1:p:83-96
    DOI: 10.1007/s11336-008-9095-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-008-9095-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-008-9095-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Andrés Houseman & Brent A. Coull & Rebecca A. Betensky, 2006. "Feature-Specific Penalized Latent Class Analysis for Genomic Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1062-1070, December.
    2. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:37:i02 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    2. Hans-Friedrich Köhn & Chia-Yi Chiu, 2016. "A Proof of the Duality of the DINA Model and the DINO Model," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 171-184, July.
    3. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    4. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    5. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    6. Chia-Yi Chiu & Hans-Friedrich Köhn, 2019. "Consistency Theory for the General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 830-845, September.
    7. E. Andrés Houseman & Carmen Marsit & Margaret Karagas & Louise M. Ryan, 2007. "Penalized Item Response Theory Models: Application to Epigenetic Alterations in Bladder Cancer," Biometrics, The International Biometric Society, vol. 63(4), pages 1269-1277, December.
    8. Baolin Wu, 2013. "Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 358-367, February.
    9. Rajeev Kohli & Kamel Jedidi, 2005. "Probabilistic Subset Conjunction," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 737-757, December.
    10. Shiyu Wang & Yan Yang & Steven Andrew Culpepper & Jeffrey A. Douglas, 2018. "Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 57-87, February.
    11. Matthias Davier & Shelby Haberman, 2014. "Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 340-346, April.
    12. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    13. Michel Meulders & Paul Boeck & Iven Mechelen, 2003. "A taxonomy of latent structure assumptions for probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 61-77, March.
    14. Xuliang Gao & Wenchao Ma & Daxun Wang & Yan Cai & Dongbo Tu, 2021. "A Class of Cognitive Diagnosis Models for Polytomous Data," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 297-322, June.
    15. Elizabeth Ayers & Sophia Rabe-Hesketh & Rebecca Nugent, 2013. "Incorporating Student Covariates in Cognitive Diagnosis Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 195-224, July.
    16. Hong-Yun Liu & Xiao-Feng You & Wen-Yi Wang & Shu-Liang Ding & Hua-Hua Chang, 2013. "The Development of Computerized Adaptive Testing with Cognitive Diagnosis for an English Achievement Test in China," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 152-172, July.
    17. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    18. Michel Meulders & Francis Tuerlinckx & Wolf Vanpaemel, 2013. "Constrained Multilevel Latent Class Models for the Analysis of Three-Way Three-Mode Binary Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 306-337, October.
    19. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    20. Jonathan Templin & Laine Bradshaw, 2014. "Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 317-339, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:74:y:2009:i:1:p:83-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.