IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v32y2004i3p336-383.html
   My bibliography  Save this article

Autoregressive Latent Trajectory (ALT) Models A Synthesis of Two Traditions

Author

Listed:
  • Kenneth A. Bollen
  • Patrick J. Curran

Abstract

Although there are a variety of statistical methods available for the analysis of longitudinal panel data, two approaches are of particular historical importance: the autoregressive (simplex) model and the latent trajectory (curve) model. These two approaches have been portrayed as competing methodologies such that one approach is superior to the other. We argue that the autoregressive and trajectory models are special cases of a more encompassing model that we call the autoregressive latent trajectory (ALT) model. In this paper we detail the underlying statistical theory and mathematical identification of this model, and demonstrate the ALT model using two empirical data sets. The first reanalyzes a simulated repeated measures data set that was previously used to argue against the autoregressive model, and we illustrate how the ALT model can recover the true latent curve model. Second, we apply the ALT model to real family income data on N=3912 adults over a seven year period and find evidence for both autoregressive and latent trajectory processes. Extensions and limitations are discussed.

Suggested Citation

  • Kenneth A. Bollen & Patrick J. Curran, 2004. "Autoregressive Latent Trajectory (ALT) Models A Synthesis of Two Traditions," Sociological Methods & Research, , vol. 32(3), pages 336-383, February.
  • Handle: RePEc:sae:somere:v:32:y:2004:i:3:p:336-383
    DOI: 10.1177/0049124103260222
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124103260222
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124103260222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Satorra, 1990. "Robustness issues in structural equation modeling: a review of recent developments," Quality & Quantity: International Journal of Methodology, Springer, vol. 24(4), pages 367-386, November.
    2. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    3. Lloyd Humphreys, 1960. "Investigations of the simplex," Psychometrika, Springer;The Psychometric Society, vol. 25(4), pages 313-323, December.
    4. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    5. Ledyard Tucker, 1958. "Determination of parameters of a functional relation by factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(1), pages 19-23, March.
    6. P. Bentler & David Weeks, 1980. "Linear structural equations with latent variables," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 289-308, September.
    7. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chia-Yi & Lien, Yin-Ju, 2018. "Trajectories of co-occurrence of depressive symptoms and deviant behaviors: The influences of perceived social support and personal characteristics," Children and Youth Services Review, Elsevier, vol. 95(C), pages 174-182.
    2. James Anderson & Rangaraj Ramanujam & Devon Hensel & Carl Sirio, 2010. "Reporting trends in a regional medication error data-sharing system," Health Care Management Science, Springer, vol. 13(1), pages 74-83, March.
    3. Stephen Pudney, 2008. "The dynamics of perception: modelling subjective wellbeing in a short panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 21-40, January.
    4. Fanti, Kostas A. & Colins, Olivier F. & Andershed, Henrik, 2019. "Unraveling the longitudinal reciprocal associations between anxiety, delinquency, and depression from early to middle adolescence," Journal of Criminal Justice, Elsevier, vol. 62(C), pages 29-34.
    5. Marc J. M. H. Delsing & Johan H. L. Oud, 2008. "Analyzing reciprocal relationships by means of the continuous‐time autoregressive latent trajectory model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 58-82, February.
    6. Areti Gkypali & Kostas Kounetas & Kostas Tsekouras, 2019. "European countries’ competitiveness and productive performance evolution: unraveling the complexity in a heterogeneity context," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 665-695, April.
    7. Louis Chauvel & Martin Schröder, 2017. "A Prey-Predator Model of Trade Union Density and Inequality in 12 Advanced Capitalisms over Long Periods," Kyklos, Wiley Blackwell, vol. 70(1), pages 3-26, February.
    8. Fiona Steele, 2008. "Multilevel models for longitudinal data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 5-19, January.
    9. Santos, David Ferreira Lopes & Basso, Leonardo Fernando Cruz & Kimura, Herbert, 2018. "The trajectory of the ability to innovate and the financial performance of the Brazilian industry," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 258-270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    2. Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
    3. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    4. Guido Alessandri & Michele Vecchione & Brent Donnellan & John Tisak, 2013. "An Application of the LC-LSTM Framework to the Self-esteem Instability Case," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 769-792, October.
    5. Marc A. Scott & Mark S. Handcock, 2005. "Persistent Inequality? Answers From Hybrid Models for Longitudinal Data," Sociological Methods & Research, , vol. 34(1), pages 3-30, August.
    6. Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
    7. Pasquale Dolce & Natale Lauro, 2015. "Comparing maximum likelihood and PLS estimates for structural equation modeling with formative blocks," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 891-902, May.
    8. Joel Steele & Emilio Ferrer & John Nesselroade, 2014. "An Idiographic Approach to Estimating Models of Dyadic Interactions with Differential Equations," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 675-700, October.
    9. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    10. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    11. Marc J. M. H. Delsing & Johan H. L. Oud, 2008. "Analyzing reciprocal relationships by means of the continuous‐time autoregressive latent trajectory model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 58-82, February.
    12. Ellen L. Hamaker, 2005. "Conditions for the Equivalence of the Autoregressive Latent Trajectory Model and a Latent Growth Curve Model With Autoregressive Disturbances," Sociological Methods & Research, , vol. 33(3), pages 404-416, February.
    13. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    14. Shelley A. Blozis & Jeffrey R. Harring, 2017. "Understanding Individual-level Change Through the Basis Functions of a Latent Curve Model," Sociological Methods & Research, , vol. 46(4), pages 793-820, November.
    15. Luisa Corrado & Giuseppe De Michele, 2016. "Mind the Gap: Identifying Latent Objective and Subjective Multi-dimensional Indices of Well-Being," CEIS Research Paper 386, Tor Vergata University, CEIS, revised 24 Jun 2016.
    16. Jeffrey R. Harring, 2009. "A Nonlinear Mixed Effects Model for Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 293-318, September.
    17. Chen, Yushun & Lin, Lian-Shin, 2010. "Structural equation-based latent growth curve modeling of watershed attribute-regulated stream sensitivity to reduced acidic deposition," Ecological Modelling, Elsevier, vol. 221(17), pages 2086-2094.
    18. Heungsun Hwang & Wayne Desarbo & Yoshio Takane, 2007. "Fuzzy Clusterwise Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 181-198, June.
    19. Chou, Chih-Ping & Yang, Dongyun & Pentz, Mary Ann & Hser, Yih-Ing, 2004. "Piecewise growth curve modeling approach for longitudinal prevention study," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 213-225, June.
    20. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:32:y:2004:i:3:p:336-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.