IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v67y2002i1p95-121.html
   My bibliography  Save this article

A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers

Author

Listed:
  • Ke-Hai Yuan
  • Linda Marshall
  • Peter Bentler

Abstract

No abstract is available for this item.

Suggested Citation

  • Ke-Hai Yuan & Linda Marshall & Peter Bentler, 2002. "A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 95-121, March.
  • Handle: RePEc:spr:psycho:v:67:y:2002:i:1:p:95-121
    DOI: 10.1007/BF02294711
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294711
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. A. Campbell, 1980. "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 231-237, November.
    2. Bengt Muthén & David Kaplan & Michael Hollis, 1987. "On structural equation modeling with data that are not missing completely at random," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 431-462, September.
    3. Verboon, Peter & Heiser, Willem J., 1994. "Resistant lower rank approximation of matrices by iterative majorization," Computational Statistics & Data Analysis, Elsevier, vol. 18(4), pages 457-467, November.
    4. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    5. Wim Krijnen & Theo Dijkstra & Richard Gill, 1998. "Conditions for factor (in)determinacy in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 63(4), pages 359-367, December.
    6. C. Hendricks Brown, 1983. "Asymptotic comparison of missing data procedures for estimating factor loadings," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 269-291, June.
    7. Masanori Ichikawa & Sadanori Konishi, 1995. "Application of the bootstrap methods in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 77-93, March.
    8. Yutaka Tanaka & Yoshimasa Odaka, 1989. "Influential observations in principal factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 475-485, September.
    9. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    10. Kentaro Hayashi & Yiu-Fai Yung, 1999. "Standard errors for the class of orthomax-rotated factor loadings: Some matrix results," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 451-460, December.
    11. Robert Jennrich, 1973. "Standard errors for obliquely rotated factor loadings," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 593-604, December.
    12. Carl Finkbeiner, 1979. "Estimation for the multiple factor model when data are missing," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 409-420, December.
    13. Robert Jennrich, 1978. "Rotational equivalence of factor loading matrices with specified values," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 421-426, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke-Hai Yuan & Zhiyong Zhang & Lijuan Wang, 2024. "Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 974-1006, September.
    2. Guangjian Zhang & Minami Hattori & Lauren A. Trichtinger, 2023. "Rotating Factors to Simplify Their Structural Paths," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 865-887, September.
    3. Ke-Hai Yuan & Kentaro Hayashi, 2005. "On muthén’s maximum likelihood for two-level covariance structure models," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 147-167, March.
    4. Subash Chandra Pattnaik & Rashmita Sahoo, 2021. "High-performance Work Practices, Affective Commitment of Employees and Organizational Performance: A Multi-level Modelling Using 2-1-2 Mediation Analysis," Global Business Review, International Management Institute, vol. 22(6), pages 1594-1609, December.
    5. Guangjian Zhang & Kristopher Preacher & Robert Jennrich, 2012. "The Infinitesimal Jackknife with Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 634-648, October.
    6. Gonçalo Rodrigues Brás & Miguel Torres Preto, 2021. "The consequences of intrapreneurship in exporting firms: a structural-model approach," CeBER Working Papers 2021-06, Centre for Business and Economics Research (CeBER), University of Coimbra.
    7. Yinqiu He & Zi Wang & Gongjun Xu, 2021. "A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 442-463, June.
    8. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    9. W. Holmes Finch, 2024. "Comparison of Methods for Addressing Outliers in Exploratory Factor Analysis and Impact on Accuracy of Determining the Number of Factors," Stats, MDPI, vol. 7(3), pages 1-21, August.
    10. Ke-Hai Yuan & Zhiyong Zhang, 2012. "Robust Structural Equation Modeling with Missing Data and Auxiliary Variables," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 803-826, October.
    11. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangjian Zhang & Minami Hattori & Lauren A. Trichtinger, 2023. "Rotating Factors to Simplify Their Structural Paths," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 865-887, September.
    2. Guangjian Zhang & Kristopher Preacher & Robert Jennrich, 2012. "The Infinitesimal Jackknife with Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 634-648, October.
    3. Haruhiko Ogasawara, 2002. "Concise formulas for the standard errors of component loading estimates," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 289-297, June.
    4. Tang, Man-Lai & Bentler, Peter M., 1998. "Theory and method for constrained estimation in structural equation models with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 27(3), pages 257-270, May.
    5. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    6. Kentaro Hayashi & Yiu-Fai Yung, 1999. "Standard errors for the class of orthomax-rotated factor loadings: Some matrix results," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 451-460, December.
    7. Boik, Robert J., 2008. "An implicit function approach to constrained optimization with applications to asymptotic expansions," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 465-489, March.
    8. Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
    9. Barnes, Stuart J. & Vidgen, Richard T., 2014. "Technology socialness and Web site satisfaction," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 12-25.
    10. Ting Lin, 2010. "A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(2), pages 277-287, February.
    11. Olinsky, Alan & Chen, Shaw & Harlow, Lisa, 2003. "The comparative efficacy of imputation methods for missing data in structural equation modeling," European Journal of Operational Research, Elsevier, vol. 151(1), pages 53-79, November.
    12. Haruhiko Ogasawara, 2004. "Asymptotic biases in exploratory factor analysis and structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 235-256, June.
    13. Guangjian Zhang & Kristopher J. Preacher, 2015. "Factor Rotation and Standard Errors in Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(6), pages 579-603, December.
    14. Tang, Man-Lai & Lee, Sik-Yum, 1998. "Analysis of structural equation models with censored or truncated data via EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 33-46, March.
    15. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    16. Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
    17. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    18. Fernando Castelló-Sirvent & Pablo Pinazo-Dallenbach, 2021. "Corruption Shock in Mexico: fsQCA Analysis of Entrepreneurial Intention in University Students," Mathematics, MDPI, vol. 9(14), pages 1-31, July.
    19. Sik-Yum Lee & S. Wang, 1996. "Sensitivity analysis of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 93-108, March.
    20. Matkovskyy, Roman, 2013. "To the Problem of Financial Safety Estimation: the Index of Financial Safety of Turkey," MPRA Paper 47673, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:67:y:2002:i:1:p:95-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.