IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v47y1982i1p25-45.html
   My bibliography  Save this article

A multidimensional scaling model for the size-weight illusion

Author

Listed:
  • Terrence Dunn
  • Richard Harshman

Abstract

No abstract is available for this item.

Suggested Citation

  • Terrence Dunn & Richard Harshman, 1982. "A multidimensional scaling model for the size-weight illusion," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 25-45, March.
  • Handle: RePEc:spr:psycho:v:47:y:1982:i:1:p:25-45
    DOI: 10.1007/BF02293849
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02293849
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02293849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. J. Ramsay, 1977. "Maximum likelihood estimation in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 241-266, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    2. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohn, Hans-Friedrich, 2006. "Combinatorial individual differences scaling within the city-block metric," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 931-946, November.
    2. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    3. Dawn Iacobucci & Doug Grisaffe & Wayne DeSarbo, 2017. "Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 81-98, December.
    4. Martin Young & Wayne DeSarbo, 1995. "A parametric procedure for ultrametric tree estimation from conditional rank order proximity data," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 47-75, March.
    5. Abe, Makoto, 1998. "Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling," European Journal of Operational Research, Elsevier, vol. 111(2), pages 216-227, December.
    6. Adri Smaling & Geert Soete, 1992. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 451-457, September.
    7. Suzanne Winsberg & Geert Soete, 1993. "A latent class approach to fitting the weighted Euclidean model, clascal," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 315-330, June.
    8. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    9. Yoshio Takane & J. Carroll, 1981. "Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 389-405, December.
    10. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    11. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    12. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    13. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.
    14. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    15. Paul Dickes & Marie Valentova & Monique Borsenberger, 2010. "Construct Validation and Application of a Common Measure of Social Cohesion in 33 European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 98(3), pages 451-473, September.
    16. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    17. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    18. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2019. "Customer satisfaction evaluation by common component and specific weight analysis using a mixed coding system," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2491-2505, September.
    19. Qingsong Wang & Chunfeng Cui & Deren Han, 2023. "Accelerated Doubly Stochastic Gradient Descent for Tensor CP Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 665-704, May.
    20. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:47:y:1982:i:1:p:25-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.