IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v48y1983i2p253-257.html
   My bibliography  Save this article

More on EM for ML factor analysis

Author

Listed:
  • Donald Rubin
  • Dorothy Thayer

Abstract

No abstract is available for this item.

Suggested Citation

  • Donald Rubin & Dorothy Thayer, 1983. "More on EM for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 253-257, June.
  • Handle: RePEc:spr:psycho:v:48:y:1983:i:2:p:253-257
    DOI: 10.1007/BF02294020
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294020
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    2. P. Bentler & Jeffrey Tanaka, 1983. "Problems with EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 247-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    2. H. Kiiveri, 1987. "An incomplete data approach to the analysis of covariance structures," Psychometrika, Springer;The Psychometric Society, vol. 52(4), pages 539-554, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2014. "Bayesian analysis of dynamic factor models: An ex-post approach towards the rotation problem," Kiel Working Papers 1902, Kiel Institute for the World Economy (IfW Kiel).
    2. P. M. Bentler & Chih-Ping Chou, 1987. "Practical Issues in Structural Modeling," Sociological Methods & Research, , vol. 16(1), pages 78-117, August.
    3. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    4. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    5. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    6. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    7. Chen, Derek H. C. & Gawande, Kishore, 2007. "Underlying dimensions of knowledge assessment : factor analysis of the knowledge assessment methodology data," Policy Research Working Paper Series 4216, The World Bank.
    8. William Gradner, 1990. "Analyzing sequential categorical data: Individual variation in markov chains," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 263-275, June.
    9. Zhou, Lin & Tang, Yayong, 2021. "Linearly preconditioned nonlinear conjugate gradient acceleration of the PX-EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    10. Kim, Jiwhan & Nam, Changi & Ryu, Min Ho, 2020. "IPTV vs. emerging video services: Dilemma of telcos to upgrade the broadband," Telecommunications Policy, Elsevier, vol. 44(4).
    11. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    12. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    13. John Tisak & William Meredith, 1989. "Exploratory longitudinal factor analysis in multiple populations," Psychometrika, Springer;The Psychometric Society, vol. 54(2), pages 261-281, June.
    14. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    15. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 407-424, June.
    16. Anne Boomsma, 1985. "Nonconvergence, improper solutions, and starting values in lisrel maximum likelihood estimation," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 229-242, June.
    17. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    18. Sentana, Enrique, 2004. "Factor representing portfolios in large asset markets," Journal of Econometrics, Elsevier, vol. 119(2), pages 257-289, April.
    19. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    20. Tincho Almuzara & Dante Amengual & Enrique Sentana, 2017. "Normality Tests for Latent Variables," Working Papers wp2018_1708, CEMFI.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:48:y:1983:i:2:p:253-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.