IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i1p84-99.html
   My bibliography  Save this article

An empirical analysis of exact algorithms for the unbounded knapsack problem

Author

Listed:
  • Becker, Henrique
  • Buriol, Luciana S.

Abstract

This work presents an empirical analysis of exact algorithms for the unbounded knapsack problem, which includes seven algorithms from the literature, two commercial solvers, and more than ten thousand instances. The terminating step-off, a dynamic programming algorithm from 1966, presented the lowest mean time to solve the most recent benchmark from the literature. The threshold and collective dominances are properties of the unbounded knapsack problem first discussed in 1998, and exploited by the current state-of-the-art algorithms. The terminating step-off algorithm did not exploit such dominances, but has an alternative mechanism for dealing with dominances which does not explicitly exploits collective and threshold dominances. Also, the pricing subproblems found when solving hard cutting stock problems with column generation can cause branch-and-bound algorithms to display worst-case times. The authors present a new class of instances which favors the branch-and-bound approach over the dynamic programming approach but do not have high amounts of simple, multiple and collective dominated items. This behaviour illustrates how the definition of hard instances changes among algorithm approaches. The codes used for solving the unbounded knapsack problem and for instance generation are all available online.

Suggested Citation

  • Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:84-99
    DOI: 10.1016/j.ejor.2019.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719301390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djangir A. Babayev & Fred Glover & Jennifer Ryan, 1997. "A New Knapsack Solution Approach by Integer Equivalent Aggregation and Consistency Determination," INFORMS Journal on Computing, INFORMS, vol. 9(1), pages 43-50, February.
    2. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    3. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    4. Jeremy F. Shapiro & Harvey M. Wagner, 1967. "A Finite Renewal Algorithm for the Knapsack and Turnpike Models," Operations Research, INFORMS, vol. 15(2), pages 319-341, April.
    5. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    6. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.
    7. A. Victor Cabot, 1970. "An Enumeration Algorithm for Knapsack Problems," Operations Research, INFORMS, vol. 18(2), pages 306-311, April.
    8. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    9. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang, 2024. "An Improved Unbounded-DP Algorithm for the Unbounded Knapsack Problem with Bounded Coefficients," Mathematics, MDPI, vol. 12(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    4. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    5. Gomory, Ralph, 2016. "Origin and early evolution of corner polyhedra," European Journal of Operational Research, Elsevier, vol. 253(3), pages 543-556.
    6. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    7. Wuttke, David A. & Heese, H. Sebastian, 2018. "Two-dimensional cutting stock problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(1), pages 303-315.
    8. Yuen, Boon J., 1995. "Improved heuristics for sequencing cutting patterns," European Journal of Operational Research, Elsevier, vol. 87(1), pages 57-64, November.
    9. Ben Messaoud, Said & Chu, Chengbin & Espinouse, Marie-Laure, 2008. "Characterization and modelling of guillotine constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 112-126, November.
    10. Heßler, Katrin & Gschwind, Timo & Irnich, Stefan, 2018. "Stabilized branch-and-price algorithms for vector packing problems," European Journal of Operational Research, Elsevier, vol. 271(2), pages 401-419.
    11. Y-J Seong & Y-G G & M-K Kang & C-W Kang, 2004. "An improved branch and bound algorithm for a strongly correlated unbounded knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 547-552, May.
    12. Ralph E. Gomory, 2002. "Early Integer Programming," Operations Research, INFORMS, vol. 50(1), pages 78-81, February.
    13. Hoto, Robinson & Arenales, Marcos & Maculan, Nelson, 2007. "The one dimensional Compartmentalised Knapsack Problem: A case study," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1183-1195, December.
    14. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2022. "Bin packing with lexicographic objectives for loading weight- and volume-constrained trucks in a direct-shipping system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 1-43, June.
    15. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Katrin Heßler & Timo Gschwind & Stefan Irnich, 2017. "Stabilized Branch-and-Price Algorithms for Vector Packing Problems," Working Papers 1713, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.
    18. Song, X. & Chu, C.B. & Nie, Y.Y. & Bennell, J.A., 2006. "An iterative sequential heuristic procedure to a real-life 1.5-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1870-1889, December.
    19. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Huang, Ping H. & Lawley, Mark & Morin, Thomas, 2011. "Tight bounds for periodicity theorems on the unbounded Knapsack problem," European Journal of Operational Research, Elsevier, vol. 215(2), pages 319-324, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:84-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.