Biobjective UAV routing for a mission to visit multiple mobile targets
Author
Abstract
Suggested Citation
DOI: 10.1007/s00291-023-00715-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Murat Köksalan & Banu Soylu, 2010. "Bicriteria p -Hub Location Problems and Evolutionary Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 528-542, November.
- Murat Köksalan & Banu Lokman, 2009. "Approximating the nondominated frontiers of multi‐objective combinatorial optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 191-198, March.
- Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tezcaner Öztürk, Diclehan & Köksalan, Murat, 2023. "Biobjective route planning of an unmanned air vehicle in continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 151-169.
- James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
- Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
- Michael D. Moskal & Erdi Dasdemir & Rajan Batta, 2023. "Unmanned Aerial Vehicle Information Collection Missions with Uncertain Characteristics," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 120-137, January.
- Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
- Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.
- Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
- Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
- Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
- Ramamoorthy, Prasanna & Vidyarthi, Navneet & Verma, Manish, 2024. "Efficient solution approaches for the bi-criteria p-hub median and dispersion problem," European Journal of Operational Research, Elsevier, vol. 314(1), pages 79-93.
- Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
- Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
- Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
- Mohammad Mahdi Nasiri & Amir Khaleghi & Kannan Govindan & Ali Bozorgi-Amiri, 2023. "Sustainable hierarchical multi-modal hub network design problem: bi-objective formulations and solution algorithms," Operational Research, Springer, vol. 23(2), pages 1-62, June.
- Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
- Liting Chen & Sebastian Wandelt & Weibin Dai & Xiaoqian Sun, 2022. "Scalable Vertiport Hub Location Selection for Air Taxi Operations in a Metropolitan Region," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 834-856, March.
More about this item
Keywords
Unmanned air vehicles; Real-time routing; Multiobjective optimization; Continuous space;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:45:y:2023:i:3:d:10.1007_s00291-023-00715-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.