IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i2d10.1007_s12351-023-00767-9.html
   My bibliography  Save this article

Sustainable hierarchical multi-modal hub network design problem: bi-objective formulations and solution algorithms

Author

Listed:
  • Mohammad Mahdi Nasiri

    (University of Tehran)

  • Amir Khaleghi

    (University of Tehran)

  • Kannan Govindan

    (Shanghai Maritime University
    University of Southern Denmark
    Yonsei University
    Woxsen University)

  • Ali Bozorgi-Amiri

    (University of Tehran)

Abstract

This paper presents a bi-objective model for the design and optimization of a sustainable hierarchical multi-modal hub network. The proposed model focuses on sustainability by considering economic, environmental, and social aspects of the decisions in a hierarchical network. A case of Turkish network for freight transportation is used to validate the proposed model. To solve the small-sized problems, the augmented epsilon constraint method version 2 (AUGMECON2) is applied. It can be inferred from the Pareto-optimal set obtained by AUGMECON2 that the effect of increasing the number of hubs after a threshold is marginal. The current contribution proposes two multi-objective genetic algorithms (NSGA-II and NRGA), which incorporate LP solving and Dijkstra algorithm. The results show the superiority of NRGA compared to NSGA-II in terms of solution time. Also, we present an alternative, more efficient formulation to the problem. Based on the alternative formulation, in addition to AUGMECON2, we use two exact methods, including Torabi and Hassini (TH) method and augmented weighted Tchebycheff procedure (AWTP), to find Pareto-optimal solutions for small, medium, and large-sized problems (including the case study). The performance of the proposed solution methods is measured using some multi-objective indicators. The results show the superiority of AUGMECON2.

Suggested Citation

  • Mohammad Mahdi Nasiri & Amir Khaleghi & Kannan Govindan & Ali Bozorgi-Amiri, 2023. "Sustainable hierarchical multi-modal hub network design problem: bi-objective formulations and solution algorithms," Operational Research, Springer, vol. 23(2), pages 1-62, June.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00767-9
    DOI: 10.1007/s12351-023-00767-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00767-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00767-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murat Köksalan & Banu Soylu, 2010. "Bicriteria p -Hub Location Problems and Evolutionary Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 528-542, November.
    2. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    3. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    4. Wei Zhong & Zhicai Juan & Fang Zong & Huishuang Su, 2018. "Hierarchical hub location model and hybrid algorithm for integration of urban and rural public transport," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    5. Klincewicz, J. G., 1991. "Heuristics for the p-hub location problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 25-37, July.
    6. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    7. Gupta, Vishal Kumar & Ting, Q.U. & Tiwari, Manoj Kumar, 2019. "Multi-period price optimization problem for omnichannel retailers accounting for customer heterogeneity," International Journal of Production Economics, Elsevier, vol. 212(C), pages 155-167.
    8. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    9. Kara, Bahar Y. & Tansel, Barbaros C., 2000. "On the single-assignment p-hub center problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 648-655, September.
    10. Campbell, Ann Melissa & Lowe, Timothy J. & Zhang, Li, 2007. "The p-hub center allocation problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 819-835, January.
    11. James F. Campbell, 1996. "Hub Location and the p -Hub Median Problem," Operations Research, INFORMS, vol. 44(6), pages 923-935, December.
    12. Aykin, Turgut, 1994. "Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem," European Journal of Operational Research, Elsevier, vol. 79(3), pages 501-523, December.
    13. Turgut Aykin, 1995. "Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System," Transportation Science, INFORMS, vol. 29(3), pages 201-221, August.
    14. A. J. Goldman, 1969. "Optimal Locations for Centers in a Network," Transportation Science, INFORMS, vol. 3(4), pages 352-360, November.
    15. Aykin, Turgut, 1995. "The hub location and routing problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 200-219, May.
    16. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    17. Yaman, Hande, 2009. "The hierarchical hub median problem with single assignment," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 643-658, July.
    18. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    19. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    20. Lin, Cheng-Chang, 2010. "The integrated secondary route network design model in the hierarchical hub-and-spoke network for dual express services," International Journal of Production Economics, Elsevier, vol. 123(1), pages 20-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    2. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    3. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    4. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    6. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    8. B Y Kara & B C Tansel, 2003. "The single-assignment hub covering problem: Models and linearizations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 59-64, January.
    9. Ebery, Jamie & Krishnamoorthy, Mohan & Ernst, Andreas & Boland, Natashia, 2000. "The capacitated multiple allocation hub location problem: Formulations and algorithms," European Journal of Operational Research, Elsevier, vol. 120(3), pages 614-631, February.
    10. Sabine Limbourg & Bart Jourquin, 2010. "Market area of intermodal rail‐road container terminals embedded in a hub‐and‐spoke network," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 135-154, March.
    11. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2019. "Alternate Solution Approaches for Competitive Hub Location Problems," IIMA Working Papers WP 2019-12-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    13. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    14. Hande Yaman & Oya Ekin Karasan & Bahar Y. Kara, 2012. "Release Time Scheduling and Hub Location for Next-Day Delivery," Operations Research, INFORMS, vol. 60(4), pages 906-917, August.
    15. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    16. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    17. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    18. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    19. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    20. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00767-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.