IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v89y2019i6d10.1007_s11573-019-00935-4.html
   My bibliography  Save this article

Using convex preference cones in multiple criteria decision making and related fields

Author

Listed:
  • Nasim Nasrabadi

    (University of Birjand)

  • Akram Dehnokhalaji

    (Aston University)

  • Pekka Korhonen

    (Aalto University School of Business)

  • Jyrki Wallenius

    (Aalto University School of Business)

Abstract

This paper reviews our own and colleagues’ research on using convex preference cones in multiple criteria decision making and related fields. The original paper by Korhonen, Wallenius, and Zionts was published in Management Science in 1984. We first present the underlying theory, concepts, and method. Then we discuss applications of the theory, particularly for finding the most preferred alternative, finding a partial and total rank ordering of alternatives, as well as developing algorithms for solving multi-objective integer and other optimization problems.

Suggested Citation

  • Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.
  • Handle: RePEc:spr:jbecon:v:89:y:2019:i:6:d:10.1007_s11573-019-00935-4
    DOI: 10.1007/s11573-019-00935-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-019-00935-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-019-00935-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canan Ulu & Murat Köksalan, 2001. "An interactive procedure for selecting acceptable alternatives in the presence of multiple criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(7), pages 592-606, October.
    2. Korhonen, Pekka & Soleimani-damaneh, Majid & Wallenius, Jyrki, 2016. "Dual cone approach to convex-cone dominance in multiple criteria decision making," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1139-1143.
    3. Canan Ulu & Murat Köksalan, 2014. "An interactive approach to multicriteria sorting for quasiconcave value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 447-457, September.
    4. Gülşah Karakaya & Murat Köksalan, 2016. "An interactive approach for Bi-attribute multi-item auctions," Annals of Operations Research, Springer, vol. 245(1), pages 97-119, October.
    5. Karakaya, G. & Köksalan, M. & Ahipaşaoğlu, S.D., 2018. "Interactive algorithms for a broad underlying family of preference functions," European Journal of Operational Research, Elsevier, vol. 265(1), pages 248-262.
    6. Srinivas Y. Prasad & Mark H. Karwan & Stanley Zionts, 1997. "Use of Convex Cones in Interactive Multiple Objective Decision Making," Management Science, INFORMS, vol. 43(5), pages 723-734, May.
    7. Merja Halme & Tarja Joro & Pekka Korhonen & Seppo Salo & Jyrki Wallenius, 1999. "A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis," Management Science, INFORMS, vol. 45(1), pages 103-115, January.
    8. Halme, Merja & Korhonen, Pekka & Eskelinen, Juha, 2014. "Non-convex value efficiency analysis and its application to bank branch sales evaluation," Omega, Elsevier, vol. 48(C), pages 10-18.
    9. R. Ramesh & Mark H. Karwan & Stanley Zionts, 1989. "Preference Structure Representation Using Convex Cones in Multicriteria Integer Programming," Management Science, INFORMS, vol. 35(9), pages 1092-1105, September.
    10. Pekka Korhonen & Jyrki Wallenius & Stanley Zionts, 1984. "Solving the Discrete Multiple Criteria Problem using Convex Cones," Management Science, INFORMS, vol. 30(11), pages 1336-1345, November.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Pekka Korhonen & Majid Soleimani-damaneh & Jyrki Wallenius, 2017. "The use of quasi-concave value functions in MCDM: some theoretical results," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 367-375, October.
    13. Akram Dehnokhalaji & Behjat Hallaji & Narges Soltani & Jafar Sadeghi, 2017. "Convex cone-based ranking of decision-making units in DEA," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 861-880, July.
    14. Gordon B. Hazen, 1983. "Preference Convex Unanimity in Multiple Criteria Decision Making," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 505-516, November.
    15. Karsu, Özlem & Morton, Alec & Argyris, Nikos, 2018. "Capturing preferences for inequality aversion in decision support," European Journal of Operational Research, Elsevier, vol. 264(2), pages 686-706.
    16. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    17. Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
    18. Stanley Zionts & Jyrki Wallenius, 1976. "An Interactive Programming Method for Solving the Multiple Criteria Problem," Management Science, INFORMS, vol. 22(6), pages 652-663, February.
    19. Murat Köksalan & Mark H. Karwan & Stanley Zionts, 1988. "An approach for solving discrete alternative multiple criteria problems involving ordinal criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 625-641, December.
    20. Fowler, John W. & Gel, Esma S. & Köksalan, Murat M. & Korhonen, Pekka & Marquis, Jon L. & Wallenius, Jyrki, 2010. "Interactive evolutionary multi-objective optimization for quasi-concave preference functions," European Journal of Operational Research, Elsevier, vol. 206(2), pages 417-425, October.
    21. Murat Koksalan, M. & Taner, Orhan V., 1992. "An approach for finding the most preferred alternative in the presence of multiple criteria," European Journal of Operational Research, Elsevier, vol. 60(1), pages 52-60, July.
    22. Pekka Korhonen & Herbert Moskowitz & Jyrki Wallenius, 1986. "A Progressive Algorithm for Modeling and Solving Multiple-Criteria Decision Problems," Operations Research, INFORMS, vol. 34(5), pages 726-731, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soleimani-damaneh, Majid & Pourkarimi, Latif & Korhonen, Pekka J. & Wallenius, Jyrki, 2021. "An operational test for the existence of a consistent increasing quasi-concave value function," European Journal of Operational Research, Elsevier, vol. 289(1), pages 232-239.
    2. Selin Özpeynirci & Özgür Özpeynirci & Vincent Mousseau, 2021. "An interactive algorithm for resource allocation with balance concerns," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 983-1005, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Argyris & Alec Morton & José Rui Figueira, 2014. "CUT: A Multicriteria Approach for Concavifiable Preferences," Operations Research, INFORMS, vol. 62(3), pages 633-642, June.
    2. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    3. Soleimani-damaneh, Majid & Pourkarimi, Latif & Korhonen, Pekka J. & Wallenius, Jyrki, 2021. "An operational test for the existence of a consistent increasing quasi-concave value function," European Journal of Operational Research, Elsevier, vol. 289(1), pages 232-239.
    4. Peter Reichert & Klemens Niederberger & Peter Rey & Urs Helg & Susanne Haertel-Borer, 2019. "The need for unconventional value aggregation techniques: experiences from eliciting stakeholder preferences in environmental management," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 197-219, November.
    5. Pekka Korhonen & Majid Soleimani-damaneh & Jyrki Wallenius, 2017. "The use of quasi-concave value functions in MCDM: some theoretical results," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 367-375, October.
    6. Lahdelma, Risto & Salminen, Pekka & Kuula, Markku, 2003. "Testing the efficiency of two pairwise comparison methods in discrete multiple criteria problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 496-508, March.
    7. Kaynar, Nur & Karsu, Özlem, 2018. "Equitable decision making approaches over allocations of multiple benefits to multiple entities," Omega, Elsevier, vol. 81(C), pages 85-98.
    8. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    9. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    10. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    11. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    12. Karakaya, G. & Köksalan, M. & Ahipaşaoğlu, S.D., 2018. "Interactive algorithms for a broad underlying family of preference functions," European Journal of Operational Research, Elsevier, vol. 265(1), pages 248-262.
    13. Halme, Merja & Korhonen, Pekka & Eskelinen, Juha, 2014. "Non-convex value efficiency analysis and its application to bank branch sales evaluation," Omega, Elsevier, vol. 48(C), pages 10-18.
    14. Engau, Alexander, 2009. "Tradeoff-based decomposition and decision-making in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 199(3), pages 883-891, December.
    15. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    16. Sun, Minghe & Steuer, Ralph E., 1996. "InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem," European Journal of Operational Research, Elsevier, vol. 89(3), pages 462-472, March.
    17. Canan Ulu & Murat Köksalan, 2001. "An interactive procedure for selecting acceptable alternatives in the presence of multiple criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(7), pages 592-606, October.
    18. Canan Ulu & Murat Köksalan, 2014. "An interactive approach to multicriteria sorting for quasiconcave value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 447-457, September.
    19. Panagiotis Ravanos & Giannis Karagiannis, 2021. "A VEA Benefit-of-the-Doubt Model for the HDI," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 27-46, May.
    20. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.

    More about this item

    Keywords

    Multiple criteria decision making; Discrete; Convex preference cones; Data envelopment analysis; Integer programming;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:89:y:2019:i:6:d:10.1007_s11573-019-00935-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.