IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i4d10.1007_s12597-024-00779-9.html
   My bibliography  Save this article

Learning the weights using attribute order information for multi-criteria decision making tasks

Author

Listed:
  • József Dombi

    (HUN-REN SZTE, Research Group on Artificial Intelligence
    University of Szeged)

  • Tamás Jónás

    (Eötvös Loránd University)

Abstract

In multi-criteria decision making, the importance of decision criteria (decision attributes) plays a crucial role. Ranking is a useful technique for expressing the importance of decision criteria in a decision-makers’ preference system. Since weights are commonly utilized for characterizing the importance of criteria, weight determination and assessment are important tasks in multi-criteria decision making and in voting systems as well. In this study, we concentrate on the connection between the preference order of decision criteria and the decision weights. Here, we present an easy-to-use procedure that can be used to produce a sequence of weights corresponding to a decision-makers’ preference order of decision criteria. The proposed method does not require pairwise comparisons, which is an advantageous property especially in cases where the number of criteria is large. This method is based on the application of a class of regular increasing monotone quantifiers, which we refer to as the class of weighting generator functions. We will show that the derivatives of these functions can be used for approximating the criteria weights. Also, we will demonstrate that using weighting generator functions, weights can be inverted in a consistent way. We will deduce the generators for arithmetic and geometric weight sequences, and we will present a one-parameter generator function known as the tau function in continuous-valued logic. We will show that using these weighting generator functions, the weight learning task can be turned into a simple, one-parameter optimization problem.

Suggested Citation

  • József Dombi & Tamás Jónás, 2024. "Learning the weights using attribute order information for multi-criteria decision making tasks," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2379-2409, December.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00779-9
    DOI: 10.1007/s12597-024-00779-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00779-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00779-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Sun & Shiying Li & Yong Deng, 2020. "Determining Weights in Multi-Criteria Decision Making Based on Negation of Probability Distribution under Uncertain Environment," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
    2. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    3. Jakub Więckowski & Bartłomiej Kizielewicz & Bartosz Paradowski & Andrii Shekhovtsov & Wojciech Sałabun, 2023. "Application of Multi-Criteria Decision Analysis to Identify Global and Local Importance Weights of Decision Criteria," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1867-1892, November.
    4. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    5. de Almeida, Jonatas Araujo & Costa, Ana Paula Cabral Seixas & de Almeida-Filho, Adiel Teixeira, 2016. "A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoffAuthor-Name: de Almeida, Adiel Teixeira," European Journal of Operational Research, Elsevier, vol. 250(1), pages 179-191.
    6. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    7. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    8. Arbel, Ami, 1989. "Approximate articulation of preference and priority derivation," European Journal of Operational Research, Elsevier, vol. 43(3), pages 317-326, December.
    9. Thanassoulis, Emmanuel & Kortelainen, Mika & Allen, Rachel, 2012. "Improving envelopment in Data Envelopment Analysis under variable returns to scale," European Journal of Operational Research, Elsevier, vol. 218(1), pages 175-185.
    10. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    11. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    12. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore & Słowiński, Roman, 2017. "A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis," Omega, Elsevier, vol. 73(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    2. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    3. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    4. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    5. Philip Mayer & Christopher Stephen Ball & Stefan Vögele & Wilhelm Kuckshinrichs & Dirk Rübbelke, 2019. "Analyzing Brexit: Implications for the Electricity System of Great Britain," Energies, MDPI, vol. 12(17), pages 1-27, August.
    6. Ateekh Ur Rehman & Syed Hammad Mian & Usama Umer & Yusuf Siraj Usmani, 2019. "Strategic Outcome Using Fuzzy-AHP-Based Decision Approach for Sustainable Manufacturing," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    7. Batubara, Marwan & Purwanto, Widodo Wahyu & Fauzi, Akhmad, 2016. "Proposing a decision-making process for the development of sustainable oil and gas resources using the petroleum fund: A case study of the East Natuna gas field," Resources Policy, Elsevier, vol. 49(C), pages 372-384.
    8. Marina Polykarpou & Flora Karathanasi & Takvor Soukissian & Vasiliki Loukaidi & Ioannis Kyriakides, 2023. "A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting," Energies, MDPI, vol. 16(5), pages 1-17, February.
    9. Lerche, Nils & Wilkens, Ines & Schmehl, Meike & Eigner-Thiel, Swantje & Geldermann, Jutta, 2019. "Using methods of Multi-Criteria Decision Making to provide decision support concerning local bioenergy projects," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    10. Pelissari, Renata & José Abackerli, Alvaro & Ben Amor, Sarah & Célia Oliveira, Maria & Infante, Kleber Manoel, 2021. "Multiple criteria hierarchy process for sorting problems under uncertainty applied to the evaluation of the operational maturity of research institutions," Omega, Elsevier, vol. 103(C).
    11. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    12. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    13. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    14. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    15. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    16. Mahsa Ghandi & Abbas Roozbahani, 2020. "Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 595-615, January.
    17. Ute Weißfloch & Jutta Geldermann, 2016. "Assessment of product-service systems for increasing the energy efficiency of compressed air systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 341-366.
    18. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Miller, Michael & Mattes, Katharina, 2014. "Demonstration of a multi-criteria based decision support framework for selecting PSS to increase resource efficiency," Working Papers "Sustainability and Innovation" S11/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    20. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.

    More about this item

    Keywords

    Decision support systems; Weighting generator functions; Weight learning; Inverted weights;
    All these keywords.

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00779-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.