IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v10y2016i3p341-366.html
   My bibliography  Save this article

Assessment of product-service systems for increasing the energy efficiency of compressed air systems

Author

Listed:
  • Ute Weißfloch
  • Jutta Geldermann

Abstract

Energy-optimised system operations should be a cornerstone for cleaner production in industry. However, the high energy consumption of compressed air systems (CASs) is often ignored. Product-service systems (PSSs) represent a method to improve energy efficiency, but can only be successful if they offer a win-win situation for both parties, namely the supplier and the customer. When selecting the most appropriate PSS, different quantitative or qualitative criteria have to be taken into account. Asymmetric information and differing objectives between the supplier and the user of a technology, characterise this decision problem. Like the two sides of a coin, investment in an energy-efficient production technology is judged differently by the manufacturer than by the customer. This paper presents a new approach offering multi-criteria group decision support based on the PROMETHEE method, which clearly depicts conflicting targets of decision-makers, and thus supports articulating criteria, preferences and weights of various stakeholders. This method was applied in a case study evaluating different concepts of leakage management, which were compared to the traditional business concept - acquisition and use of the compressed air system by the end-user. Within the context of the decision problem of choosing a best CAS, some further methodological developments are proposed. [Received 8 November 2014; Revised 31 August 2015; Accepted 29 December 2015]

Suggested Citation

  • Ute Weißfloch & Jutta Geldermann, 2016. "Assessment of product-service systems for increasing the energy efficiency of compressed air systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 341-366.
  • Handle: RePEc:ids:eujine:v:10:y:2016:i:3:p:341-366
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=76383
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    2. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    3. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    4. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    5. Bertoldi, Paolo & Rezessy, Silvia & Vine, Edward, 2006. "Energy service companies in European countries: Current status and a strategy to foster their development," Energy Policy, Elsevier, vol. 34(14), pages 1818-1832, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bertoni, 2019. "Multi-Criteria Decision Making for Sustainability and Value Assessment in Early PSS Design," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    2. Tien-Chin Wang & Su-Yuan Tsai, 2018. "Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches," Energies, MDPI, vol. 11(8), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nikoo & Nafise Khorramshokouh & Shahryar Monghasemi, 2015. "Optimal Design of Detention Rockfill Dams Using a Simulation-Based Optimization Approach with Mixed Sediment in the Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5469-5488, December.
    2. Majid Roodposhti & Saeed Rahimi & Mansour Beglou, 2014. "PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 77-95, August.
    3. Eppe, Stefan & De Smet, Yves, 2014. "Approximating Promethee II’s net flow scores by piecewise linear value functions," European Journal of Operational Research, Elsevier, vol. 233(3), pages 651-659.
    4. Abbas Roozbahani & Banafsheh Zahraie & Massoud Tabesh, 2012. "PROMETHEE with Precedence Order in the Criteria (PPOC) as a New Group Decision Making Aid: An Application in Urban Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3581-3599, September.
    5. Miller, Michael & Mattes, Katharina, 2014. "Demonstration of a multi-criteria based decision support framework for selecting PSS to increase resource efficiency," Working Papers "Sustainability and Innovation" S11/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    6. Marta Bottero & Chiara D’Alpaos & Alessandra Oppio, 2019. "Ranking of Adaptive Reuse Strategies for Abandoned Industrial Heritage in Vulnerable Contexts: A Multiple Criteria Decision Aiding Approach," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    7. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    8. Emilios Galariotis & Christophe Germain & Constantin Zopounidis, 2018. "A combined methodology for the concurrent evaluation of the business, financial and sports performance of football clubs: the case of France," Annals of Operations Research, Springer, vol. 266(1), pages 589-612, July.
    9. Ateekh Ur Rehman & Syed Hammad Mian & Usama Umer & Yusuf Siraj Usmani, 2019. "Strategic Outcome Using Fuzzy-AHP-Based Decision Approach for Sustainable Manufacturing," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    10. Tsuen-Ho Hsu & Ling-Zhong Lin, 2014. "Using Fuzzy Preference Method for Group Package Tour Based on the Risk Perception," Group Decision and Negotiation, Springer, vol. 23(2), pages 299-323, March.
    11. Stefanos Xenarios & Heracles Polatidis & Matthew McCartney & Attila Nemes, 2015. "Developing a User-Based Decision-Aid Framework for Water Storage Systems in Sub-Saharan Africa: The Case of Blue Nile Basin in Ethiopia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-30, December.
    12. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    13. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    14. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    15. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    16. Rahimdel, Mohammad Javad & Noferesti, Hossein, 2020. "Investment preferences of Iran's mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force," Resources Policy, Elsevier, vol. 67(C).
    17. Hassan, Mohammad Nurul & Hawas, Yaser E. & Ahmed, Kamran, 2013. "A multi-dimensional framework for evaluating the transit service performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 47-61.
    18. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    19. Morteza Akbari & Hadi Memarian & Ehsan Neamatollahi & Masoud Jafari Shalamzari & Mohammad Alizadeh Noughani & Dawood Zakeri, 2021. "Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2503-2523, February.
    20. Barbosa, Ailson de Souza & Shayani, Rafael Amaral & Oliveira, Marco Aurélio Gonçalves de, 2018. "A multi-criteria decision analysis method for regulatory evaluation of electricity distribution service quality," Utilities Policy, Elsevier, vol. 53(C), pages 38-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:10:y:2016:i:3:p:341-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.