IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i4d10.1007_s12597-020-00461-w.html
   My bibliography  Save this article

A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem

Author

Listed:
  • M. A. El Sayed

    (Benha University)

  • Ibrahim A. Baky

    (Benha University
    Tabuk University)

  • Pitam Singh

    (Motilal Nehru National Institute of Technology)

Abstract

This paper presents a new modified technique for order preference by similarity to ideal solution (M-TOPSIS) approach for unraveling stochastic fuzzy multi-level multi-objective fractional decision making problem (ML-MOFDM) problem. In the proposed model the coefficients and the scalars of the fractional objectives have a fuzzy nature. The right-hand sides are stochastic parameters also, both of the left-hand side coefficients and the tolerance measures are fuzzy kind. In this manner, the deterministic-crisp ML-MOFDM model of stochastic fuzzy ML-MOFDM can be gotten utilizing chance constrained strategy with predominance plausibility criteria and the $$ \alpha $$ α -cut methodology. In literature, almost all works on multi-level fractional programming are the crisp version, in which they convert the fractional functions into a linear one using a first order Taylor series which causes rounding off error. The proposed M-TOPSIS approach presents a new method for solving such problem without approximating or changing the nature of the problem. An algorithm to clear up the M-TOPSIS approach, just as illustrative numerical model is displayed.

Suggested Citation

  • M. A. El Sayed & Ibrahim A. Baky & Pitam Singh, 2020. "A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1374-1403, December.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00461-w
    DOI: 10.1007/s12597-020-00461-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-020-00461-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-020-00461-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. S. Osman & O. E. Emam & M. A. El Sayed, 2017. "Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 816-840, December.
    2. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    3. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    4. Lai, Young-Jou & Liu, Ting-Yun & Hwang, Ching-Lai, 1994. "TOPSIS for MODM," European Journal of Operational Research, Elsevier, vol. 76(3), pages 486-500, August.
    5. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2019. "Ordered random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 344-366, March.
    6. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    7. Nuran Güzel, 2013. "A Proposal to the Solution of Multiobjective Linear Fractional Programming Problem," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-4, November.
    8. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Sun & Tianhang Jiang & Yufei Song & Hao Guo & Yushi Zhang, 2022. "Research on the Optimization of Fresh Agricultural Products Trade Distribution Path Based on Genetic Algorithm," Agriculture, MDPI, vol. 12(10), pages 1-25, October.
    2. Darko Božanić & Dragan Pamucar & Ibrahim Badi & Duško Tešić, 2023. "A decision support tool for oil spill response strategy selection: application of LBWA and Z MABAC methods," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 24-58, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. S. Osman & O. E. Emam & M. A. El Sayed, 2017. "Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 816-840, December.
    2. Rizk M. Rizk-Allah & Mahmoud A. Abo-Sinna, 2021. "A comparative study of two optimization approaches for solving bi-level multi-objective linear fractional programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 374-402, June.
    3. Kailash Lachhwani, 2021. "Solving the general fully neutrosophic multi-level multiobjective linear programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1192-1216, December.
    4. Firoz Ahmad, 2022. "Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management," Annals of Operations Research, Springer, vol. 311(2), pages 551-585, April.
    5. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    6. Hong Wang & Xiaodong Zhang, 2018. "A Decentralized Bi-Level Fuzzy Two-Stage Decision Model for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1615-1629, March.
    7. Dempe, S., 2011. "Comment to "interactive fuzzy goal programming approach for bilevel programming problem" by S.R. Arora and R. Gupta," European Journal of Operational Research, Elsevier, vol. 212(2), pages 429-431, July.
    8. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    9. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    10. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Mahmoud A. Abo-Sinna & Ibrahim A. Baky, 2010. "Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2010, pages 1-15, March.
    12. Hawaf AbdAlhakim & O. E. Emam & A. A. Abd El-Mageed, 2019. "Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 367-389, June.
    13. Łatuszyńska Anna, 2014. "Multiple-Criteria Decision Analysis Using Topsis Method For Interval Data In Research Into The Level Of Information Society Development," Folia Oeconomica Stetinensia, Sciendo, vol. 13(2), pages 63-76, July.
    14. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    15. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    16. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    17. Kailash Lachhwani, 2024. "An improved solution for fully neutrosophic multi-level linear programming problem based on Laplace transform," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 867-896, June.
    18. Ishizaka, Alessio & Nemery, Philippe & Lidouh, Karim, 2013. "Location selection for the construction of a casino in the Greater London region: A triple multi-criteria approach," Tourism Management, Elsevier, vol. 34(C), pages 211-220.
    19. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    20. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00461-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.