IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-021-03997-2.html
   My bibliography  Save this article

Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management

Author

Listed:
  • Firoz Ahmad

    (Aligarh Muslim University
    Indian Statistical Institute)

Abstract

Multiobjective optimization problems have a significant role in modeling and optimizing the framework of different real-life issues. It may not always be possible to obtain a single solution that satisfies each objective efficiently; however, there is ample opportunity to get a compromise solution to multiobjective programming problems (MOPPs). Neutrosophic set (NS) is the extension of fuzzy and intuitionistic fuzzy sets. Thus, based on NS, this study presents neutrosophic optimization models for MOPP under the neutrosophic fuzzy environment. We have developed three models while keeping in mind the maximal satisfactory degree of decision-maker(s). The proposed models are then applied to various discussed numerical examples, and solution results are compared with other approaches. Also, the propounded models are implemented in the pharmaceutical supply chain planning problem. The sensitivity analysis of the obtained outcomes at different criteria has been performed. At last, the conclusion and future research scope have been depicted effectively.

Suggested Citation

  • Firoz Ahmad, 2022. "Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management," Annals of Operations Research, Springer, vol. 311(2), pages 551-585, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-021-03997-2
    DOI: 10.1007/s10479-021-03997-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03997-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03997-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
    3. Sujeet Kumar Singh & Mark Goh, 2019. "Multi-objective mixed integer programming and an application in a pharmaceutical supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 1214-1237, February.
    4. Carlos Franco & Edgar Alfonso-Lizarazo, 2017. "A Structured Review of Quantitative Models of the Pharmaceutical Supply Chain," Complexity, Hindawi, vol. 2017, pages 1-13, December.
    5. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    6. Abbas Ahmadi & Mohammad Mousazadeh & S. Ali Torabi & Mir Saman Pishvaee, 2018. "OR Applications in Pharmaceutical Supply Chain Management," International Series in Operations Research & Management Science, in: Cengiz Kahraman & Y. Ilker Topcu (ed.), Operations Research Applications in Health Care Management, chapter 0, pages 461-491, Springer.
    7. Li, Shaoyuan & Hu, Chaofang, 2009. "Satisfying optimization method based on goal programming for fuzzy multiple objective optimization problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 675-684, September.
    8. Tilahun, Surafel Luleseged, 2019. "Feasibility reduction approach for hierarchical decision making with multiple objectives," Operations Research Perspectives, Elsevier, vol. 6(C).
    9. Settanni, Ettore & Harrington, Tomás Seosamh & Srai, Jagjit Singh, 2017. "Pharmaceutical supply chain models: A synthesis from a systems view of operations research," Operations Research Perspectives, Elsevier, vol. 4(C), pages 74-95.
    10. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    11. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    12. Chung, Sung Hoon & Kwon, Changhyun, 2016. "Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals," International Journal of Production Economics, Elsevier, vol. 179(C), pages 117-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Firoz & Alnowibet, Khalid A. & Alrasheedi, Adel F. & Adhami, Ahmad Yusuf, 2022. "A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Rizk M. Rizk-Allah & Mahmoud A. Abo-Sinna, 2021. "A comparative study of two optimization approaches for solving bi-level multi-objective linear fractional programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 374-402, June.
    3. Hong Wang & Xiaodong Zhang, 2018. "A Decentralized Bi-Level Fuzzy Two-Stage Decision Model for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1615-1629, March.
    4. Dempe, S., 2011. "Comment to "interactive fuzzy goal programming approach for bilevel programming problem" by S.R. Arora and R. Gupta," European Journal of Operational Research, Elsevier, vol. 212(2), pages 429-431, July.
    5. Shabnam Rekabi & Ali Ghodratnama & Amir Azaron, 2022. "Designing pharmaceutical supply chain networks with perishable items considering congestion," Operational Research, Springer, vol. 22(4), pages 4159-4219, September.
    6. Saha, Esha & Rathore, Pradeep & Parida, Ratri & Rana, Nripendra P., 2022. "The interplay of emerging technologies in pharmaceutical supply chain performance: An empirical investigation for the rise of Pharma 4.0," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Hung-Wen Cheng, 2013. "A satisficing method for fuzzy goal programming problems with different importance and priorities," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 485-498, January.
    8. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    9. Shaju George & Safaa Elrashid, 2023. "Inventory Management and Pharmaceutical Supply Chain Performance of Hospital Pharmacies in Bahrain: A Structural Equation Modeling Approach," SAGE Open, , vol. 13(1), pages 21582440221, January.
    10. Ronaldo Brito da Silva & Claudia Aparecida de Mattos, 2019. "Critical Success Factors of a Drug Traceability System for Creating Value in a Pharmaceutical Supply Chain (PSC)," IJERPH, MDPI, vol. 16(11), pages 1-18, June.
    11. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    12. Cheng, Chi-Bin, 2011. "Reverse auction with buyer-supplier negotiation using bi-level distributed programming," European Journal of Operational Research, Elsevier, vol. 211(3), pages 601-611, June.
    13. M. S. Osman & O. E. Emam & M. A. El Sayed, 2017. "Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 816-840, December.
    14. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    15. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    16. M. A. El Sayed & Ibrahim A. Baky & Pitam Singh, 2020. "A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1374-1403, December.
    17. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    18. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    19. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    20. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-021-03997-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.