IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i1d10.1007_s12597-019-00429-5.html
   My bibliography  Save this article

A heuristic for obtaining better initial feasible solution to the transportation problem

Author

Listed:
  • Md. Ashraful Babu

    (International University of Business Agriculture and Technology)

  • M. A. Hoque

    (BRAC University)

  • Md. Sharif Uddin

    (Jahangirnagar University)

Abstract

Vogel’s Approximation Method (VAM) is known as the best algorithm for generating an efficient initial feasible solution to the transportation problem. We demonstrate that VAM has some limitations and computational blunders. To overcome these limitations we develop an Improved Vogel’s Approximation Method (IVAM) by correcting these blunders. It is compared with VAM on obtained initial feasible solutions to a numerical example problem. Reduction in the total transportation cost over VAM by IVAM is found to be 2.27%. Besides, we have compared IVAM with each of twelve previously developed methods including VAM on solutions to numerical problems. IVAM leads to the minimal total cost solutions to seven, better solutions to four and the same better solution to the remaining one. Finally, a statistical analysis has been performed over the results of 1500 randomly generated transportation problems with fifteen distinct dimensions, where each of them has 100 problems instances. This analysis has demonstrated better performance of IVAM over VAM by reducing the total transportation cost in 71.8% of solved problems, especially for large size problems. Thus IVAM outperforms VAM by providing better initial feasible to the transportation problem.

Suggested Citation

  • Md. Ashraful Babu & M. A. Hoque & Md. Sharif Uddin, 2020. "A heuristic for obtaining better initial feasible solution to the transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 221-245, March.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:1:d:10.1007_s12597-019-00429-5
    DOI: 10.1007/s12597-019-00429-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00429-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00429-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhijit Baidya, 2019. "Stochastic supply chain, transportation models: implementations and benefits," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 432-476, June.
    2. Subhakanta Dash & S. P. Mohanty, 2018. "Uncertain transportation model with rough unit cost, demand and supply," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 1-13, March.
    3. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective capacitated transportation problem with mixed constraint: a case study of certain and uncertain environment," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 447-477, June.
    4. Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
    5. M. Mathirajan & B. Meenakshi, 2004. "Experimental Analysis Of Some Variants Of Vogel'S Approximation Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 447-462.
    6. Sharma, R. R. K. & Sharma, K. D., 2000. "A new dual based procedure for the transportation problem," European Journal of Operational Research, Elsevier, vol. 122(3), pages 611-624, May.
    7. Liu, Shiang-Tai, 2003. "The total cost bounds of the transportation problem with varying demand and supply," Omega, Elsevier, vol. 31(4), pages 247-251, August.
    8. Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
    9. Muwafaq Mohammed Alkubaisi, 2015. "Modified VOGEL Method to Find Initial Basic Feasible Solution (IBFS) Introducing a New Methodology to Find Best IBFS," Business and Management Research, Business and Management Research, Sciedu Press, vol. 4(2), pages 22-36, June.
    10. Kavita Gupta & Ritu Arora, 2017. "More for less method to minimize the unit transportation cost of a capacitated transportation problem with bounds on rim conditions," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 460-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Mathirajan & Sujan Reddy & M. Vimala Rani, 2022. "An experimental study of newly proposed initial basic feasible solution methods for a transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 102-145, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Fanrong & Butt, Muhammad Munir & Li, Zuoan & Zhu, Linzhi, 2017. "An upper bound on the minimal total cost of the transportation problem with varying demands and supplies," Omega, Elsevier, vol. 68(C), pages 105-118.
    2. M. A. Hoque & Z. A. M. S. Juman, 2024. "Decreased minimum total transportation–inventory cost bounds assuming variability in supplies and demands," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 1888-1905, December.
    3. Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
    4. Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
    5. D’Ambrosio, C. & Gentili, M. & Cerulli, R., 2020. "The optimal value range problem for the Interval (immune) Transportation Problem," Omega, Elsevier, vol. 95(C).
    6. Elif Garajová & Miroslav Rada, 2023. "Interval transportation problem: feasibility, optimality and the worst optimal value," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 769-790, September.
    7. Trust Tawanda, 2017. "A node merging approach to the transhipment problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 370-378, January.
    8. Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
    9. Prachi Agrawal & Talari Ganesh, 2020. "Fuzzy fractional stochastic transportation problem involving exponential distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1093-1114, December.
    10. Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
    11. Kowalski, Krzysztof & Lev, Benjamin, 2008. "On step fixed-charge transportation problem," Omega, Elsevier, vol. 36(5), pages 913-917, October.
    12. Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    13. Kavita Gupta & Ritu Arora, 2018. "Solving the problem of industry by formulating it as a fractional capacitated transportation problem with bounds on rim conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 509-516, April.
    14. Firoz Ahmad, 2022. "Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management," Annals of Operations Research, Springer, vol. 311(2), pages 551-585, April.
    15. Sharma, R.R.K. & Berry, V., 2007. "Developing new formulations and relaxations of single stage capacitated warehouse location problem (SSCWLP): Empirical investigation for assessing relative strengths and computational effort," European Journal of Operational Research, Elsevier, vol. 177(2), pages 803-812, March.
    16. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    17. Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
    18. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    19. Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
    20. Ahmad, Firoz & Alnowibet, Khalid A. & Alrasheedi, Adel F. & Adhami, Ahmad Yusuf, 2022. "A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:1:d:10.1007_s12597-019-00429-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.