Multi-objective capacitated transportation problem with mixed constraint: a case study of certain and uncertain environment
Author
Abstract
Suggested Citation
DOI: 10.1007/s12597-018-0330-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sankar Kumar Roy, 2014. "Multi-choice stochastic transportation problem involving Weibull distribution," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 21(1), pages 38-58.
- Liu, Shiang-Tai & Kao, Chiang, 2004. "Solving fuzzy transportation problems based on extension principle," European Journal of Operational Research, Elsevier, vol. 153(3), pages 661-674, March.
- S. Acharya & M.P. Biswal, 2016. "Solving multi-choice multi-objective transportation problem," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 8(4), pages 509-527.
- Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shalabh Singh & Sonia Singh, 2022. "Shipment in a multi-choice environment: a case study of shipping carriers in US," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1195-1219, December.
- Pravash Kumar Giri & Manas Kumar Maiti & Manoranjan Maiti, 2023. "Profit maximization fuzzy 4D-TP with budget constraint for breakable substitute items: a swarm based optimization approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 571-615, June.
- P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
- Md. Ashraful Babu & M. A. Hoque & Md. Sharif Uddin, 2020. "A heuristic for obtaining better initial feasible solution to the transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 221-245, March.
- Anjana Kuiri & Barun Das, 2020. "An application of FISM and TOPSIS to a multi-objective multi-item solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1299-1318, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
- Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
- S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
- Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
- Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
- Haridas Roy & Govind Pathak & Rakesh Kumar & Zahid Amin Malik, 2024. "Maximum modulus zero-suffix method for finding an optimal solution to fuzzy transportation problems," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 897-917, June.
- Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
- Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
- Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
- Sharma, Dinesh K. & Jana, R.K., 2009. "A hybrid genetic algorithm model for transshipment management decisions," International Journal of Production Economics, Elsevier, vol. 122(2), pages 703-713, December.
- Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
- Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
- Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
- Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
- Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
- Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
- Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
- Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
- P. Senthil Kumar, 2020. "Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 37(3), pages 418-451.
- Chen Bai & Lixiao Yao & Cheng Wang & Yongxuan Zhao & Weien Peng, 2022. "Optimization of Water and Energy Spatial Patterns in the Cascade Pump Station Irrigation District," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
More about this item
Keywords
Capacitated transportation problem; Multi objective linear programming; Multi-objective fractional programming; Fuzzy goal programming; Mixed constraints; Multi-choice programming; Chance-constrained programming; Pareto distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:55:y:2018:i:2:d:10.1007_s12597-018-0330-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.