Interval transportation problem: feasibility, optimality and the worst optimal value
Author
Abstract
Suggested Citation
DOI: 10.1007/s10100-023-00841-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Shiang-Tai, 2003. "The total cost bounds of the transportation problem with varying demand and supply," Omega, Elsevier, vol. 31(4), pages 247-251, August.
- Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
- D’Ambrosio, C. & Gentili, M. & Cerulli, R., 2020. "The optimal value range problem for the Interval (immune) Transportation Problem," Omega, Elsevier, vol. 95(C).
- Wlodzimierz Szwarc, 1971. "The transportation paradox," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(2), pages 185-202, June.
- Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
- Xie, Fanrong & Butt, Muhammad Munir & Li, Zuoan & Zhu, Linzhi, 2017. "An upper bound on the minimal total cost of the transportation problem with varying demands and supplies," Omega, Elsevier, vol. 68(C), pages 105-118.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
- D’Ambrosio, C. & Gentili, M. & Cerulli, R., 2020. "The optimal value range problem for the Interval (immune) Transportation Problem," Omega, Elsevier, vol. 95(C).
- Xie, Fanrong & Butt, Muhammad Munir & Li, Zuoan & Zhu, Linzhi, 2017. "An upper bound on the minimal total cost of the transportation problem with varying demands and supplies," Omega, Elsevier, vol. 68(C), pages 105-118.
- M. A. Hoque & Z. A. M. S. Juman, 2024. "Decreased minimum total transportation–inventory cost bounds assuming variability in supplies and demands," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 1888-1905, December.
- Md. Ashraful Babu & M. A. Hoque & Md. Sharif Uddin, 2020. "A heuristic for obtaining better initial feasible solution to the transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 221-245, March.
- Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
- Kowalski, Krzysztof & Lev, Benjamin, 2008. "On step fixed-charge transportation problem," Omega, Elsevier, vol. 36(5), pages 913-917, October.
- Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
- Fanrong Xie & Anuj Sharma & Zuoan Li, 2022. "An alternate approach to solve two-level priority based assignment problem," Computational Optimization and Applications, Springer, vol. 81(2), pages 613-656, March.
- Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
- Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
- Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
- P. Senthil Kumar, 2024. "An efficient approach for solving type-2 intuitionistic fuzzy solid transportation problems with their equivalent crisp solid transportation problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4370-4403, September.
- Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
- P.Senthil Kumar, 2018. "PSK Method for Solving Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 7(4), pages 62-99, October.
- P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
- Dai, Jingqi & Li, Zongmin, 2023. "An equilibrium approach towards sustainable operation of a modern coal chemical industrial park," Omega, Elsevier, vol. 120(C).
- Joanna Szkutnik-Rogoż & Jarosław Ziółkowski & Jerzy Małachowski & Mateusz Oszczypała, 2021. "Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network," Energies, MDPI, vol. 14(21), pages 1-32, October.
More about this item
Keywords
Transportation problem; Interval programming; Optimal value;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:31:y:2023:i:3:d:10.1007_s10100-023-00841-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.