IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v31y2003i4p247-251.html
   My bibliography  Save this article

The total cost bounds of the transportation problem with varying demand and supply

Author

Listed:
  • Liu, Shiang-Tai

Abstract

A transportation problem is a linear programming problem based on a network structure consisting of a finite numbers of nodes and arcs attached to them. In real world applications, the supply and demand quantities in the transportation problem are sometimes hardly specified precisely because of changing economic conditions. This paper investigates the transportation problem when the demand and supply quantities are varying. A pair of mathematical programs is formulated to calculate the objective value. The derived result is also in range, where the total transportation cost would appear. In addition to allowing for simultaneous changes in supply and demand values, the total cost bounds are calculated directly. Due to the structure of the transportation problem, the largest total transportation cost may not occur at the highest total quantities shipped. Since the total cost bounds are derived, it would be beneficial to decision-making.

Suggested Citation

  • Liu, Shiang-Tai, 2003. "The total cost bounds of the transportation problem with varying demand and supply," Omega, Elsevier, vol. 31(4), pages 247-251, August.
  • Handle: RePEc:eee:jomega:v:31:y:2003:i:4:p:247-251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(03)00054-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    2. D’Ambrosio, C. & Gentili, M. & Cerulli, R., 2020. "The optimal value range problem for the Interval (immune) Transportation Problem," Omega, Elsevier, vol. 95(C).
    3. Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
    4. Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
    5. Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
    6. Kowalski, Krzysztof & Lev, Benjamin, 2008. "On step fixed-charge transportation problem," Omega, Elsevier, vol. 36(5), pages 913-917, October.
    7. Juman, Z.A.M.S. & Hoque, M.A., 2014. "A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies," European Journal of Operational Research, Elsevier, vol. 239(1), pages 146-156.
    8. Xie, Fanrong & Butt, Muhammad Munir & Li, Zuoan & Zhu, Linzhi, 2017. "An upper bound on the minimal total cost of the transportation problem with varying demands and supplies," Omega, Elsevier, vol. 68(C), pages 105-118.
    9. Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    10. Elif Garajová & Miroslav Rada, 2023. "Interval transportation problem: feasibility, optimality and the worst optimal value," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 769-790, September.
    11. Md. Ashraful Babu & M. A. Hoque & Md. Sharif Uddin, 2020. "A heuristic for obtaining better initial feasible solution to the transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 221-245, March.
    12. Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:31:y:2003:i:4:p:247-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.