IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v53y2016i3d10.1007_s12597-016-0248-7.html
   My bibliography  Save this article

Optimal ordering policy for newsvendor models with bidirectional changes in demand using expert judgment

Author

Listed:
  • Madhukar Nagare

    (Veermata Jijabai Technological Institute (VJTI))

  • Pankaj Dutta

    (Indian Institute of Technology Bombay)

  • Naoufel Cheikhrouhou

    (HES-SO, University of Applied Sciences Western Switzerland)

Abstract

Demand forecast is a critical determinant of order quantity under newsvendor problem (NVP) framework and warrants major revision in the event of changing circumstances or happening of some unforeseen events having potential to alter the demand. Retailers of single period products such as fashion apparels are required to pass their orders far ahead of selling seasons and apply preseason two-stage ordering procedure, where an initial order (first stage) is followed by a final confirmed order (second stage). The enterprise forecasting experts may get additional information related to the occurrence of some unforeseen events that may significantly impact the initial demand estimation. In this paper, the potential impact of such events is combined using a weight factor to obtain revised demand forecasts. In this context, this paper develops inventory models under NVP framework to determine the optimal order quantity and weight factor on the basis of revised forecasts. Considering the bidirectional changes in demand, we formulate a unique objective function that operates as a profit maximization function for the positive demand adjustment and turns into a cost minimization function for the negative demand adjustment. Models developed without constraints at first instance are extended subsequently by incorporating constraints of budget limits, storage space capacity and required service level. Near closed form expressions of decision variables for four demand distributions with multiplicative demand forms are presented. The results demonstrate economic benefits of using revised demand through models developed, negative impact of constraints, and role of demand distribution entropy in determining the order size and expected profit.

Suggested Citation

  • Madhukar Nagare & Pankaj Dutta & Naoufel Cheikhrouhou, 2016. "Optimal ordering policy for newsvendor models with bidirectional changes in demand using expert judgment," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 620-647, September.
  • Handle: RePEc:spr:opsear:v:53:y:2016:i:3:d:10.1007_s12597-016-0248-7
    DOI: 10.1007/s12597-016-0248-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-016-0248-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-016-0248-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khouja, Moutaz, 1999. "The single-period (news-vendor) problem: literature review and suggestions for future research," Omega, Elsevier, vol. 27(5), pages 537-553, October.
    2. Dutta, Pankaj & Chakraborty, Debjani, 2010. "Incorporating one-way substitution policy into the newsboy problem with imprecise customer demand," European Journal of Operational Research, Elsevier, vol. 200(1), pages 99-110, January.
    3. Alfares, Hesham K. & Elmorra, Hassan H., 2005. "The distribution-free newsboy problem: Extensions to the shortage penalty case," International Journal of Production Economics, Elsevier, vol. 93(1), pages 465-477, January.
    4. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    5. Jammernegg, Werner & Kischka, Peter, 2013. "Risk preferences of a newsvendor with service and loss constraints," International Journal of Production Economics, Elsevier, vol. 143(2), pages 410-415.
    6. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    7. Rossi, Roberto & Prestwich, Steven & Tarim, S. Armagan & Hnich, Brahim, 2014. "Confidence-based optimisation for the newsvendor problem under binomial, Poisson and exponential demand," European Journal of Operational Research, Elsevier, vol. 239(3), pages 674-684.
    8. Mostard, Julien & Teunter, Ruud & de Koster, René, 2011. "Forecasting demand for single-period products: A case study in the apparel industry," European Journal of Operational Research, Elsevier, vol. 211(1), pages 139-147, May.
    9. Lokesh Nagar & Pankaj Dutta & Karuna Jain, 2014. "An integrated supply chain model for new products with imprecise production and supply under scenario dependent fuzzy random demand," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 873-887, May.
    10. Panda, D. & Kar, S. & Maity, K. & Maiti, M., 2008. "A single period inventory model with imperfect production and stochastic demand under chance and imprecise constraints," European Journal of Operational Research, Elsevier, vol. 188(1), pages 121-139, July.
    11. Choi, Tsan-Ming, 2007. "Pre-season stocking and pricing decisions for fashion retailers with multiple information updating," International Journal of Production Economics, Elsevier, vol. 106(1), pages 146-170, March.
    12. Qin, Yan & Wang, Ruoxuan & Vakharia, Asoo J. & Chen, Yuwen & Seref, Michelle M.H., 2011. "The newsvendor problem: Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 213(2), pages 361-374, September.
    13. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    14. Khouja, Moutaz & Robbins, Stephanie S., 2003. "Linking advertising and quantity decisions in the single-period inventory model," International Journal of Production Economics, Elsevier, vol. 86(2), pages 93-105, November.
    15. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    16. Petrovic, Dobrila & Petrovic, Radivoj & Vujosevic, Mirko, 1996. "Fuzzy models for the newsboy problem," International Journal of Production Economics, Elsevier, vol. 45(1-3), pages 435-441, August.
    17. Roy Batchelor & Pami Dua, 1995. "Forecaster Diversity and the Benefits of Combining Forecasts," Management Science, INFORMS, vol. 41(1), pages 68-75, January.
    18. Urban, Timothy L. & Baker, R. C., 1997. "Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns," European Journal of Operational Research, Elsevier, vol. 103(3), pages 573-583, December.
    19. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    20. Abdel-Malek, Layek L. & Montanari, Roberto, 2005. "An analysis of the multi-product newsboy problem with a budget constraint," International Journal of Production Economics, Elsevier, vol. 97(3), pages 296-307, September.
    21. Dai, Jiansheng & Meng, Weidong, 2015. "A risk-averse newsvendor model under marketing-dependency and price-dependency," International Journal of Production Economics, Elsevier, vol. 160(C), pages 220-229.
    22. Juan R. Trapero & Robert Fildes & Andrey Davydenko, 2011. "Nonlinear identification of judgmental forecasts effects at SKU level," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(5), pages 490-508, August.
    23. Hon-Shiang Lau, 1997. "Simple formulas for the expected costs in the newsboy problem: An educational note," European Journal of Operational Research, Elsevier, vol. 100(3), pages 557-561, August.
    24. T-M Choi & D Li & H Yan, 2003. "Optimal two-stage ordering policy with Bayesian information updating," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 846-859, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    2. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    3. Abu Hashan Md Mashud & Hui-Ming Wee & Chiao-Ven Huang & Jei-Zheng Wu, 2020. "Optimal Replenishment Policy for Deteriorating Products in a Newsboy Problem with Multiple Just-in-Time Deliveries," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    4. Zhang, Ren-Qian & Zhang, Lan-Kang & Zhou, Wen-Hui & Saigal, Romesh & Wang, Hui-Wen, 2014. "The multi-item newsvendor model with cross-selling and the solution when demand is jointly normally distributed," European Journal of Operational Research, Elsevier, vol. 236(1), pages 147-159.
    5. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    6. Guo, Peijun & Ma, Xiuyan, 2014. "Newsvendor models for innovative products with one-shot decision theory," European Journal of Operational Research, Elsevier, vol. 239(2), pages 523-536.
    7. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    8. Guo, Min & Chen, Yu-wang & Wang, Hongwei & Yang, Jian-Bo & Zhang, Keyong, 2019. "The single-period (newsvendor) problem under interval grade uncertainties," European Journal of Operational Research, Elsevier, vol. 273(1), pages 198-216.
    9. Franses, Philip Hans, 2013. "Improving judgmental adjustment of model-based forecasts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 1-8.
    10. Mehmet Güray Güler, 2019. "Advertising and forecasting investments of a newsvendor," 4OR, Springer, vol. 17(1), pages 45-73, March.
    11. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    12. Baloch, Gohram & Gzara, Fatma, 2020. "Capacity and assortment planning under one-way supplier-driven substitution for pharmacy kiosks with low drug demand," European Journal of Operational Research, Elsevier, vol. 282(1), pages 108-128.
    13. Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
    14. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    15. Mehran Ullah & Irfanullah Khan & Biswajit Sarkar, 2019. "Dynamic Pricing in a Multi-Period Newsvendor Under Stochastic Price-Dependent Demand," Mathematics, MDPI, vol. 7(6), pages 1-15, June.
    16. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    17. Cedric A. Lehmann & Christiane B. Haubitz & Andreas Fügener & Ulrich W. Thonemann, 2022. "The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3419-3434, September.
    18. Franses, Philip Hans & Legerstee, Rianne, 2013. "Do statistical forecasting models for SKU-level data benefit from including past expert knowledge?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 80-87.
    19. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2021. "Distributional regression for demand forecasting in e-grocery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 831-842.
    20. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:53:y:2016:i:3:d:10.1007_s12597-016-0248-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.