IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v15y2022i1d10.1007_s12063-021-00208-w.html
   My bibliography  Save this article

Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research

Author

Listed:
  • Farheen Naz

    (Hungarian University of Agriculture and Life Sciences)

  • Anil Kumar

    (London Metropolitan University)

  • Abhijit Majumdar

    (Indian Institute of Technology)

  • Rohit Agrawal

    (Indian Institute of Technology)

Abstract

The challenging situations and disruptions that occurred due to the outbreak of the COVID-19 pandemic have created a severe need for supply chain resiliency (SCR). There has been a growing interest among researchers to investigate the resiliency in supply chain operations to overcome risks and disruptions and to achieve successful project management. The supply chain of every business requires innovative projects to accomplish competitive advantage in the market. This study was conducted to identify the significance of artificial intelligence (AI) for creating a sustainable and resilient supply chain, and also to provide optimum solutions for supply chain risk mitigation. A systematic literature review has been conducted to examine the potential research contribution or directions in the field of AI and SCR. In total, 162 articles were shortlisted from the SCOPUS database in the chosen field of research. Structural Topic Modeling (STM), a big data-based approach, was employed to generate several thematic topics of AI in SCR based on the shortlisted articles, and all topics were discussed. Furthermore, the bibliometric analysis was conducted using R-package to investigate the research trends in the area of AI in SCR. Based on the conducted review of literature, a research framework was proposed for AI in SCR that will facilitate researchers and practitioners to improve technological development in supply chain firms. The purpose is to combat sudden risks and disruptions so that project management will perform well Post COVID-19. The study will be also helpful for future researchers and practitioners to identify research directions based on existing literature covered in this paper in the field of SCR. Future research directions are proposed for AI-enabled resilient supply chain management. This study will also provide several implications for supply chain managers to achieve the required resilience in their supply chains post COVID-19 by focusing on the elements of the proposed research framework.

Suggested Citation

  • Farheen Naz & Anil Kumar & Abhijit Majumdar & Rohit Agrawal, 2022. "Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research," Operations Management Research, Springer, vol. 15(1), pages 378-398, June.
  • Handle: RePEc:spr:opmare:v:15:y:2022:i:1:d:10.1007_s12063-021-00208-w
    DOI: 10.1007/s12063-021-00208-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-021-00208-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-021-00208-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    2. Haus-Reve, Silje & Fitjar, Rune Dahl & Rodríguez-Pose, Andrés, 2019. "Does combining different types of collaboration always benefit firms? Collaboration, complementarity and product innovation in Norway," Research Policy, Elsevier, vol. 48(6), pages 1476-1486.
    3. Jiho Yoon & Srinivas Talluri & Hakan Yildiz & William Ho, 2018. "Models for supplier selection and risk mitigation: a holistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3636-3661, May.
    4. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    5. Pascal Wichmann & Alexandra Brintrup & Simon Baker & Philip Woodall & Duncan McFarlane, 2020. "Extracting supply chain maps from news articles using deep neural networks," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5320-5336, September.
    6. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    7. Wu, Yisheng & Lu, Ronghua & Yang, Jing & Xu, Feng, 2021. "Low-carbon decision-making model of online shopping supply chain considering the O2O model," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    8. Song, Dong-Ping & Dong, Jing-Xin & Xu, Jingjing, 2014. "Integrated inventory management and supplier base reduction in a supply chain with multiple uncertainties," European Journal of Operational Research, Elsevier, vol. 232(3), pages 522-536.
    9. Kwon, Ohbyung & Lee, Namyeon & Shin, Bongsik, 2014. "Data quality management, data usage experience and acquisition intention of big data analytics," International Journal of Information Management, Elsevier, vol. 34(3), pages 387-394.
    10. Ritesh Ojha & Abhijeet Ghadge & Manoj Kumar Tiwari & Umit S. Bititci, 2018. "Bayesian network modelling for supply chain risk propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5795-5819, September.
    11. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    12. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    13. Tanveen Kaur Bhatia & Amit Kumar & Srimantoorao S. Appadoo & Yuvraj Gajpal & Mahesh Kumar Sharma, 2021. "Mehar Approach for Finding Shortest Path in Supply Chain Network," Sustainability, MDPI, vol. 13(7), pages 1-14, April.
    14. Fuqiang Zhang & Xiaole Wu & Christopher S. Tang & Tianjun Feng & Yue Dai, 2020. "Evolution of Operations Management Research: from Managing Flows to Building Capabilities," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2219-2229, October.
    15. Hualin Xie & Yanwei Zhang & Zhilong Wu & Tiangui Lv, 2020. "A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions," Land, MDPI, vol. 9(1), pages 1-37, January.
    16. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    17. Wu, Desheng Dash & Zhang, Yidong & Wu, Dexiang & Olson, David L., 2010. "Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 774-787, February.
    18. Jill E. Hobbs, 2020. "Food supply chains during the COVID‐19 pandemic," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 171-176, June.
    19. Fathi, Mahdi & Khakifirooz, Marzieh & Diabat, Ali & Chen, Huangen, 2021. "An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network," International Journal of Production Economics, Elsevier, vol. 237(C).
    20. Bai, Chunguang & Sarkis, Joseph, 2010. "Integrating sustainability into supplier selection with grey system and rough set methodologies," International Journal of Production Economics, Elsevier, vol. 124(1), pages 252-264, March.
    21. Sharma, Anuj & Rana, Nripendra P. & Nunkoo, Robin, 2021. "Fifty years of information management research: A conceptual structure analysis using structural topic modeling," International Journal of Information Management, Elsevier, vol. 58(C).
    22. P. Siva Kumar & Ramesh Anbanandam, 2020. "Theory Building on Supply Chain Resilience: A SAP–LAP Analysis," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(2), pages 113-133, June.
    23. B. James Deaton & Brady J. Deaton, 2020. "Food security and Canada's agricultural system challenged by COVID‐19," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(2), pages 143-149, June.
    24. Cavalcante, Ian M. & Frazzon, Enzo M. & Forcellini, Fernando A. & Ivanov, Dmitry, 2019. "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing," International Journal of Information Management, Elsevier, vol. 49(C), pages 86-97.
    25. Rodríguez-Pose, Andrés & Haus-Reve, Silje & Fitjar, Rune, 2019. "Does combining different types of collaboration always benefit firms? Collaboration, complementarity and product innovation in," CEPR Discussion Papers 13622, C.E.P.R. Discussion Papers.
    26. Alexandra Brintrup & Johnson Pak & David Ratiney & Tim Pearce & Pascal Wichmann & Philip Woodall & Duncan McFarlane, 2020. "Supply chain data analytics for predicting supplier disruptions: a case study in complex asset manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3330-3341, June.
    27. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    28. Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), 2019. "Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 27, number 27.
    29. Hasin Md. Muhtasim Taqi & Humaira Nafisa Ahmed & Sumit Paul & Maryam Garshasbi & Syed Mithun Ali & Golam Kabir & Sanjoy Kumar Paul, 2020. "Strategies to Manage the Impacts of the COVID-19 Pandemic in the Supply Chain: Implications for Improving Economic and Social Sustainability," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    30. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    31. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    32. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    33. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    34. Yu, Wantao & Chavez, Roberto & Jacobs, Mark A. & Feng, Mengying, 2018. "Data-driven supply chain capabilities and performance: A resource-based view," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 371-385.
    35. Marco Fasan & Elise Soerger Zaro & Claudio Soerger Zaro & Barbara Porco & Riccardo Tiscini, 2021. "An empirical analysis: Did green supply chain management alleviate the effects of COVID‐19?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2702-2712, July.
    36. Junseok Lee & Ji-Ho Kang & Sunghae Jun & Hyunwoong Lim & Dongsik Jang & Sangsung Park, 2018. "Ensemble Modeling for Sustainable Technology Transfer," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    37. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    38. Mohammad Fattahi, 2020. "A data-driven approach for supply chain network design under uncertainty with consideration of social concerns," Annals of Operations Research, Springer, vol. 288(1), pages 265-284, May.
    39. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    40. Wong, Christina W.Y. & Lirn, Taih-Cherng & Yang, Ching-Chiao & Shang, Kuo-Chung, 2020. "Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization," International Journal of Production Economics, Elsevier, vol. 226(C).
    41. Ole Ellegaard & Johan A. Wallin, 2015. "The bibliometric analysis of scholarly production: How great is the impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1809-1831, December.
    42. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    2. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    3. Meike Schroeder & Sebastian Lodemann, 2021. "A Systematic Investigation of the Integration of Machine Learning into Supply Chain Risk Management," Logistics, MDPI, vol. 5(3), pages 1-17, September.
    4. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    5. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Simonetto, Marco & Sgarbossa, Fabio & Battini, Daria & Govindan, Kannan, 2022. "Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 253(C).
    7. Shafiee, Mohammad & Zare-Mehrjerdi, Yahia & Govindan, Kannan & Dastgoshade, Sohaib, 2022. "A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    8. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Chuangneng Cai & Xiancheng Hao & Kui Wang & Xuebing Dong, 2023. "The Impact of Perceived Benefits on Blockchain Adoption in Supply Chain Management," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    10. Md. Tarek Chowdhury & Aditi Sarkar & Sanjoy Kumar Paul & Md. Abdul Moktadir, 2022. "A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry," Operations Management Research, Springer, vol. 15(1), pages 166-178, June.
    11. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    12. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    13. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    14. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    15. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    16. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    17. Ramani, Vinay & Ghosh, Debabrata & Sodhi, ManMohan S., 2022. "Understanding systemic disruption from the Covid-19-induced semiconductor shortage for the auto industry," Omega, Elsevier, vol. 113(C).
    18. Dmitry Ivanov & Alexandre Dolgui, 2022. "Stress testing supply chains and creating viable ecosystems," Operations Management Research, Springer, vol. 15(1), pages 475-486, June.
    19. Balezentis, Tomas & Zickiene, Agne & Volkov, Artiom & Streimikiene, Dalia & Morkunas, Mangirdas & Dabkiene, Vida & Ribasauskiene, Erika, 2023. "Measures for the viable agri-food supply chains: A multi-criteria approach," Journal of Business Research, Elsevier, vol. 155(PA).
    20. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:15:y:2022:i:1:d:10.1007_s12063-021-00208-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.