IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v263y2023ics0925527323001676.html
   My bibliography  Save this article

A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic

Author

Listed:
  • Brusset, Xavier
  • Ivanov, Dmitry
  • Jebali, Aida
  • La Torre, Davide
  • Repetto, Marco

Abstract

The COVID-19 pandemic has illustrated the unprecedented challenges of ensuring the continuity of operations in a supply chain as suppliers’ and their suppliers stop producing due the spread of infection, leading to a degradation of downstream customer service levels in a ripple effect. In this paper, we contextualize a dynamic approach and propose an optimal control model for supply chain reconfiguration and ripple effect analysis integrated with an epidemic dynamics model. We provide supply chain managers with the optimal choice over a planning horizon among subsets of interchangeable suppliers and corresponding orders; this will maximize demand satisfaction given their prices, lead times, exposure to infection, and upstream suppliers’ risk exposure. Numerical illustrations show that our prescriptive forward-looking model can help reconfigure a supply chain and mitigate the ripple effect due to reduced production because of suppliers’ infected workers. A risk aversion factor incorporates a measure of supplier risk exposure at the upstream echelons. We examine three scenarios: (a) infection limits the capacity of suppliers, (b) the pandemic recedes but not at the same pace for all suppliers, and (c) infection waves affect the capacity of some suppliers, while others are in a recovery phase. We illustrate through a case study how our model can be immediately deployed in manufacturing or retail supply chains since the data are readily accessible from suppliers and health authorities. This work opens new avenues for prescriptive models in operations management and the study of viable supply chains by combining optimal control and epidemiological models.

Suggested Citation

  • Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:proeco:v:263:y:2023:i:c:s0925527323001676
    DOI: 10.1016/j.ijpe.2023.108935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323001676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aseem Kinra & Dmitry Ivanov & Ajay Das & Alexandre Dolgui, 2020. "Ripple effect quantification by supplier risk exposure assessment," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5559-5578, September.
    2. Ivanov, Dmitry & Keskin, Burcu B., 2023. "Post-pandemic adaptation and development of supply chain viability theory," Omega, Elsevier, vol. 116(C).
    3. Shamsi G., N. & Ali Torabi, S. & Shakouri G., H., 2018. "An option contract for vaccine procurement using the SIR epidemic model," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1122-1140.
    4. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
    5. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    6. Lowe, David & Espinosa, Angela & Yearworth, Mike, 2020. "Constitutive rules for guiding the use of the viable system model: Reflections on practice," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1014-1035.
    7. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    8. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    9. Goldman Steven Marc & Lightwood James, 2002. "Cost Optimization in the SIS Model of Infectious Disease with Treatment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 2(1), pages 1-24, April.
    10. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    11. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    13. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    14. Adhikari, Arnab & Bisi, Arnab & Avittathur, Balram, 2020. "Coordination mechanism, risk sharing, and risk aversion in a five-level textile supply chain under demand and supply uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 93-107.
    15. Kellner, Florian & Lienland, Bernhard & Utz, Sebastian, 2019. "An a posteriori decision support methodology for solving the multi-criteria supplier selection problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 505-522.
    16. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    17. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    18. Cavalcante, Ian M. & Frazzon, Enzo M. & Forcellini, Fernando A. & Ivanov, Dmitry, 2019. "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing," International Journal of Information Management, Elsevier, vol. 49(C), pages 86-97.
    19. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    20. Dmitry Ivanov & Alexandre Dolgui & Jennifer V. Blackhurst & Tsan-Ming Choi, 2023. "Toward supply chain viability theory: from lessons learned through COVID-19 pandemic to viable ecosystems," International Journal of Production Research, Taylor & Francis Journals, vol. 61(8), pages 2402-2415, April.
    21. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    22. Nagurney, Anna, 2021. "Supply chain game theory network modeling under labor constraints: Applications to the Covid-19 pandemic," European Journal of Operational Research, Elsevier, vol. 293(3), pages 880-891.
    23. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    24. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    25. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    26. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    27. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    28. M. Elisabeth Paté-Cornell & Robin L. Dillon, 2006. "The Respective Roles of Risk and Decision Analyses in Decision Support," Decision Analysis, INFORMS, vol. 3(4), pages 220-232, December.
    29. Li, Yuhong & Chen, Kedong & Collignon, Stephane & Ivanov, Dmitry, 2021. "Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1117-1131.
    30. Gupta, Varun & Ivanov, Dmitry & Choi, Tsan-Ming, 2021. "Competitive pricing of substitute products under supply disruption," Omega, Elsevier, vol. 101(C).
    31. Sanjoy Kumar Paul & Priyabrata Chowdhury, 2020. "Strategies for Managing the Impacts of Disruptions During COVID-19: an Example of Toilet Paper," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(3), pages 283-293, September.
    32. Dmitry Ivanov & Boris Sokolov & Weiwei Chen & Alexandre Dolgui & Frank Werner & Semyon Potryasaev, 2021. "A control approach to scheduling flexibly configurable jobs with dynamic structural-logical constraints," IISE Transactions, Taylor & Francis Journals, vol. 53(1), pages 21-38, January.
    33. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    34. Tadeusz Sawik, 2023. "A stochastic optimisation approach to maintain supply chain viability under the ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 61(8), pages 2452-2469, April.
    35. Sinha, Priyank & Kumar, Sameer & Prakash, Surya, 2020. "Measuring and mitigating the effects of cost disturbance propagation in multi-echelon apparel supply chains," European Journal of Operational Research, Elsevier, vol. 282(1), pages 148-160.
    36. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    37. Torabi, S.A. & Baghersad, M. & Mansouri, S.A., 2015. "Resilient supplier selection and order allocation under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 22-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    2. Ivanov, Dmitry, 2024. "Cash flow dynamics in the supply chain during and after disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Chervenkova, Tanya & Ivanov, Dmitry, 2023. "Adaptation strategies for building supply chain viability: A case study analysis of the global automotive industry re-purposing during the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    4. Ivanov, Dmitry, 2024. "Supply chain resilience: Conceptual and formal models drawing from immune system analogy," Omega, Elsevier, vol. 127(C).
    5. Mehmet Fatih Acar & Alev Özer Torgalöz & Enes Eryarsoy & Selim Zaim & Salomée Ruel, 2024. "The effect of organizational culture, supplier trust and information sharing on supply chain viability," Operations Management Research, Springer, vol. 17(3), pages 1058-1077, September.
    6. Hala Hmamed & Anass Cherrafi & Asmaa Benghabrit & Sunil Tiwari & Pankaj Sharma, 2024. "The adoption of I4.0 technologies for a sustainable and circular supply chain: an industry‐based SEM analysis from the textile sector," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 2949-2968, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    2. Ivanov, Dmitry, 2024. "Supply chain resilience: Conceptual and formal models drawing from immune system analogy," Omega, Elsevier, vol. 127(C).
    3. Dmitry Ivanov & Alexandre Dolgui, 2022. "Stress testing supply chains and creating viable ecosystems," Operations Management Research, Springer, vol. 15(1), pages 475-486, June.
    4. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    5. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Chervenkova, Tanya & Ivanov, Dmitry, 2023. "Adaptation strategies for building supply chain viability: A case study analysis of the global automotive industry re-purposing during the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    7. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    9. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    10. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    11. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    12. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    13. Khadija Echefaj & Abdelkabir Charkaoui & Anass Cherrafi & Dmitry Ivanov, 2024. "Design of resilient and viable sourcing strategies in intertwined circular supply networks," Annals of Operations Research, Springer, vol. 337(1), pages 459-498, June.
    14. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    15. Salarpour, Mojtaba & Nagurney, Anna, 2021. "A multicountry, multicommodity stochastic game theory network model of competition for medical supplies inspired by the Covid-19 pandemic," International Journal of Production Economics, Elsevier, vol. 236(C).
    16. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    17. Alam, Md Fahim Bin & Tushar, Saifur Rahman & Ahmed, Tazim & Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & de Jesus Pacheco, Diego Augusto & Nayyar, Anand & Islam, Abu Reza Md Towfiqul, 2024. "Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability," International Journal of Production Economics, Elsevier, vol. 270(C).
    18. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    19. Liu, Ming & Lin, Tao & Chu, Feng & Ding, Yueyu & Zheng, Feifeng & Chu, Chengbin, 2023. "Bi-objective optimization for supply chain ripple effect management under disruption risks with supplier actions," International Journal of Production Economics, Elsevier, vol. 265(C).
    20. Kedwadee Sombultawee & Pattama Lenuwat & Natdanai Aleenajitpong & Sakun Boon-itt, 2022. "COVID-19 and Supply Chain Management: A Review with Bibliometric," Sustainability, MDPI, vol. 14(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:263:y:2023:i:c:s0925527323001676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.