IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i4d10.1007_s12351-024-00871-4.html
   My bibliography  Save this article

Development of a new hybrid method for multi-criteria decision making (MCDM) approach: a case study for facility location selection

Author

Listed:
  • Fatih Topaloğlu

    (Malatya Turgut Özal University)

Abstract

Facility location selection is a difficult and very costly task to change after the business is established, so it is a very important decision for businesses. Numerical methods help make important decisions, such as determining the region where businesses will operate for a long time. For this purpose, multi-criteria decision making (MCDM) methods are widely used. Some practical disadvantages of existing MCDM methods are; In cases where the number of alternatives and criteria is high, more pairwise comparison matrices are required, matrix consistency becomes more difficult, and as the number of elements in the hierarchy increases, the problem becomes more complex and causes loss of time. The aim of this study is to develop a new hybrid method for the MCDM approach, which has a simpler mathematical infrastructure, is not affected by the increasing number of criteria, and does not require an additional consistency analysis. The proposed hybrid method includes Analytic Hierarchy Process (AHP) and Standard Scoring Method (SSM) methods. The method includes a single pairwise comparison matrix of the AHP method and the simple mathematical infrastructure of the SSM method, which makes calculations based on real values and standard formulas. In the study, the hybrid method was applied and analyzed to determine the most suitable geographical region of Turkey for the facility location of companies operating in the manufacturing sector in Turkey, in the light of 6 main criteria determined by the expert team as a result of a comprehensive literature review. It has been observed that classification, ranking and selection are possible with the AHP-SSM based hybrid method, which is recommended as the MCDM method, and the most suitable geographical region for the factory location in Turkey is the Black Sea Region. In addition, a comparative analysis was carried out between the proposed method and other MCDM methods.

Suggested Citation

  • Fatih Topaloğlu, 2024. "Development of a new hybrid method for multi-criteria decision making (MCDM) approach: a case study for facility location selection," Operational Research, Springer, vol. 24(4), pages 1-23, December.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00871-4
    DOI: 10.1007/s12351-024-00871-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00871-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00871-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majid Azizi & Nemat Mohebbi & Rahim Mohebbi Gargari & Mohsen Ziaie, 2015. "A strategic model for selecting the location of furniture factories: a case of the study of furniture," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 5(1/2), pages 87-108.
    2. Patrick T. Harker & Luis G. Vargas, 1990. "Reply to "Remarks on the Analytic Hierarchy Process" by J. S. Dyer," Management Science, INFORMS, vol. 36(3), pages 269-273, March.
    3. Stein, William E. & Mizzi, Philip J., 2007. "The harmonic consistency index for the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 177(1), pages 488-497, February.
    4. Gilbert Laporte & Stefan Nickel & Francisco Saldanha Gama, 2015. "Introduction to Location Science," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 1-18, Springer.
    5. Saeed Khojaste Effatpanah & Mohammad Hossein Ahmadi & Pasura Aungkulanon & Akbar Maleki & Milad Sadeghzadeh & Mohsen Sharifpur & Lingen Chen, 2022. "Comparative Analysis of Five Widely-Used Multi-Criteria Decision-Making Methods to Evaluate Clean Energy Technologies: A Case Study," Sustainability, MDPI, vol. 14(3), pages 1-33, January.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.
    2. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    3. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    4. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    5. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    6. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    7. Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.
    8. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    9. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    10. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    11. Ceren Erdin & Halil Emre Akbaş, 2019. "A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    12. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    13. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    14. Finan, J. S. & Hurley, W. J., 1999. "Transitive calibration of the AHP verbal scale," European Journal of Operational Research, Elsevier, vol. 112(2), pages 367-372, January.
    15. Chamoli, Sunil, 2015. "Preference selection index approach for optimization of V down perforated baffled roughened rectangular channel," Energy, Elsevier, vol. 93(P2), pages 1418-1425.
    16. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    17. József Temesi, 2011. "Pairwise comparison matrices and the error-free property of the decision maker," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 239-249, June.
    18. P Leskinen & J Kangas, 2005. "Rank reversals in multi-criteria decision analysis with statistical modelling of ratio-scale pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 855-861, July.
    19. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    20. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00871-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.