IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i4d10.1007_s12351-024-00870-5.html
   My bibliography  Save this article

A bilevel hierarchical covering model to protect a healthcare network against failures

Author

Listed:
  • Raheleh Khanduzi

    (Gonbad Kavous University)

  • İhsan Sadati

    (Sabanci University
    Sabanci University)

  • Vahid Akbari

    (Nottingham University Business School, University of Nottingham)

Abstract

This paper develops a bilevel problem to address the interdiction and fortification of the healthcare network in Golestan province, Iran. We explore a bilevel hierarchical covering interdiction/fortification problem (BHCIFP) to analyze the dynamics between interdiction and fortification operations, referral systems for healthcare services, capacitated health facilities, and budgetary constraints for both defense and offense. The defender (leader) aims to minimize the establishment cost of protective equipment and subsequent healthcare costs post-interdiction while maximizing patient coverage. Conversely, the attacker (follower) aims to disrupt the healthcare network by interdicting facilities, thereby increasing the total travel distance for patients. To solve this NP-hard problem, we employ a hybrid approach that integrates the tabu search algorithm (TS) for the leader’s problem with an exact method for the follower’s problem. A case study of Golestan’s healthcare network is presented to validate the model and hybrid approach. The model effectively minimizes travel distances by strategically locating defense bases, considering both the leader’s and attacker’s decisions. Comparative evaluations of the proposed hybrid TS and two other metaheuristic approaches are conducted on different case study instances and random instances. Numerical results demonstrate that the novel bilevel TS approach provides superior quality solutions in a reasonable time, establishing it as a competitive method for the proposed model.

Suggested Citation

  • Raheleh Khanduzi & İhsan Sadati & Vahid Akbari, 2024. "A bilevel hierarchical covering model to protect a healthcare network against failures," Operational Research, Springer, vol. 24(4), pages 1-40, December.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00870-5
    DOI: 10.1007/s12351-024-00870-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00870-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00870-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    2. F J Vasko & P J Knolle & D S Spiegel, 2005. "An empirical study of hybrid genetic algorithms for the set covering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1213-1223, October.
    3. Burkey, M.L. & Bhadury, J. & Eiselt, H.A., 2012. "A location-based comparison of health care services in four U.S. states with efficiency and equity," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 157-163.
    4. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    5. Uno, Takeshi & Katagiri, Hideki, 2008. "Single- and multi-objective defensive location problems on a network," European Journal of Operational Research, Elsevier, vol. 188(1), pages 76-84, July.
    6. X-Y Li & P Tian & S C H Leung, 2009. "An ant colony optimization metaheuristic hybridized with tabu search for open vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1012-1025, July.
    7. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    8. Omar Ben-Ayed & Charles E. Blair, 1990. "Computational Difficulties of Bilevel Linear Programming," Operations Research, INFORMS, vol. 38(3), pages 556-560, June.
    9. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    10. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Juan A. Díaz & Dolores E. Luna, 2020. "A bi-level maximal covering location problem," Operational Research, Springer, vol. 20(2), pages 827-855, June.
    11. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    12. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    13. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.
    14. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    15. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    2. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    3. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    4. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    5. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    6. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    7. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    8. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    9. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    10. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    11. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    12. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    13. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    14. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    15. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    16. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    17. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    18. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    19. Gatmiry, Zohreh S. & Hafezalkotob, Ashkan & Khakzar bafruei, Morteza & Soltani, Roya, 2021. "Food web conservation vs. strategic threats: A security game approach," Ecological Modelling, Elsevier, vol. 442(C).
    20. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00870-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.