IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i10d10.1057_palgrave.jors.2601919.html
   My bibliography  Save this article

An empirical study of hybrid genetic algorithms for the set covering problem

Author

Listed:
  • F J Vasko

    (Kutztown University)

  • P J Knolle

    (Tulane University)

  • D S Spiegel

    (Kutztown University)

Abstract

The purpose of this paper is to explore the computational performance of several hybrid algorithms that are extensions of a basic genetic algorithm (GA) approach for solving the set covering problem (SCP). We start by making several enhancements to a GA for the SCP that was proposed by Beasley and Chu. Next, several hybrid solution approaches are introduced that combine the GA with various local neighbourhood search approaches, with a form of the greedy randomized adaptive search procedure, and with an estimation of distribution algorithms approach. Using Beasley's library of SCPs extensive computational results are generated for the hybrid solution approaches defined in this paper. Statistical analyses of the results are performed.

Suggested Citation

  • F J Vasko & P J Knolle & D S Spiegel, 2005. "An empirical study of hybrid genetic algorithms for the set covering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1213-1223, October.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:10:d:10.1057_palgrave.jors.2601919
    DOI: 10.1057/palgrave.jors.2601919
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601919
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colin R. Reeves, 1997. "Feature Article---Genetic Algorithms for the Operations Researcher," INFORMS Journal on Computing, INFORMS, vol. 9(3), pages 231-250, August.
    2. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    3. U Aickelin, 2002. "An indirect genetic algorithm for set covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(10), pages 1118-1126, October.
    4. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 92-99, January.
    2. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "Erratum: A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1423-1430, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    2. Dimitris Bertsimas & Dan A. Iancu & Dmitriy Katz, 2013. "A New Local Search Algorithm for Binary Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 208-221, May.
    3. Naji-Azimi, Zahra & Toth, Paolo & Galli, Laura, 2010. "An electromagnetism metaheuristic for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 205(2), pages 290-300, September.
    4. Yagiura, Mutsunori & Kishida, Masahiro & Ibaraki, Toshihide, 2006. "A 3-flip neighborhood local search for the set covering problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 472-499, July.
    5. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    6. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    7. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    8. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    9. Ibrahim, Walid & El-Sayed, Hesham & El-Chouemie, Amr & Amer, Hoda, 2009. "An adaptive heuristic algorithm for VLSI test vectors selection," European Journal of Operational Research, Elsevier, vol. 199(3), pages 630-639, December.
    10. Helena Ramalhinho-Lourenço, 2001. "The crew-scheduling module in the GIST system," Economics Working Papers 547, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
    12. Yourim Yoon & Yong-Hyuk Kim, 2020. "Gene-Similarity Normalization in a Genetic Algorithm for the Maximum k -Coverage Problem," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    13. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    14. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    15. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    16. Youngho Lee & Hanif D. Sherali & Ikhyun Kwon & Seongin Kim, 2006. "A new reformulation approach for the generalized partial covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 170-179, March.
    17. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    18. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    19. Rita Portugal & Helena Ramalhinho-Lourenço & José P. Paixao, 2006. "Driver scheduling problem modelling," Economics Working Papers 991, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:10:d:10.1057_palgrave.jors.2601919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.