IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v442y2021ics0304380021000016.html
   My bibliography  Save this article

Food web conservation vs. strategic threats: A security game approach

Author

Listed:
  • Gatmiry, Zohreh S.
  • Hafezalkotob, Ashkan
  • Khakzar bafruei, Morteza
  • Soltani, Roya

Abstract

Multi-species conservation is of critical concern in ecosystem management science. In this context, modeling the effect of strategic threats on decision-making is a challenging problem that has not been sufficiently addressed. Using a security game approach, this paper investigates the optimal conservation of a food web against a strategic threat. The model builds upon the non-cooperative Stackelberg game, wherein conservator (defender) and adversary (attacker) play as leader and follower, respectively. The objective of the defender is to preventively maximize the entire web reliability, under financial and ecological constraints. The defender optimally manipulates the populations of an optimal subset of species to achieve this. In contrast, the attacker attempts to maximize web unreliability by decreasing the population of selected species, using limited resources. A meta-heuristic algorithm is developed to compute the equilibrium strategy, and the model is validated through numerical examples. Additionally, in a scenario-based approach, it is examined how the defense and attack strategies, as well as food web reliability, change as the population of keystone species change. The results also show that the combinational use of mathematical optimization and food web-specific conservation prioritization indices yields a practical tool for food web conservation prioritization. The results specifically yield theoretical insights into how to optimally control trophic cascade effects due to changing keystone species populations. A step-wise methodology is proposed to implement the model.

Suggested Citation

  • Gatmiry, Zohreh S. & Hafezalkotob, Ashkan & Khakzar bafruei, Morteza & Soltani, Roya, 2021. "Food web conservation vs. strategic threats: A security game approach," Ecological Modelling, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:ecomod:v:442:y:2021:i:c:s0304380021000016
    DOI: 10.1016/j.ecolmodel.2021.109426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    2. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    3. Hussain, A.M. Tanvir & Tschirhart, John, 2013. "Economic/ecological tradeoffs among ecosystem services and biodiversity conservation," Ecological Economics, Elsevier, vol. 93(C), pages 116-127.
    4. Byron, Carrie & Link, Jason & Costa-Pierce, Barry & Bengtson, David, 2011. "Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island," Ecological Modelling, Elsevier, vol. 222(10), pages 1743-1755.
    5. E. McDonald-Madden & R. Sabbadin & E. T. Game & P. W. J. Baxter & I. Chadès & H. P. Possingham, 2016. "Using food-web theory to conserve ecosystems," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    6. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Rejoinder," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 521-524, October.
    7. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    8. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Comment," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 507-515, October.
    9. Kjell Hausken, 2019. "Defence and attack of complex interdependent systems," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(3), pages 364-376, March.
    10. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    11. Liao, Jinbao & Li, Zhenqing & Hiebeler, David E. & El-Bana, Magdy & Deckmyn, Gaby & Nijs, Ivan, 2013. "Modelling plant population size and extinction thresholds from habitat loss and habitat fragmentation: Effects of neighbouring competition and dispersal strategy," Ecological Modelling, Elsevier, vol. 268(C), pages 9-17.
    12. Lim, R.B.H. & Liew, J.H. & Kwik, J.T.B. & Yeo, D.C.J., 2018. "Predicting food web responses to biomanipulation using Bayesian Belief Network: Assessment of accuracy and applicability using in-situ exclosure experiments," Ecological Modelling, Elsevier, vol. 384(C), pages 308-315.
    13. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    14. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    15. Shahid Naeem & Shibin Li, 1997. "Biodiversity enhances ecosystem reliability," Nature, Nature, vol. 390(6659), pages 507-509, December.
    16. Kjell Hausken, 2014. "Choosing what to protect when attacker resources and asset valuations are uncertain," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(3), pages 23-44.
    17. Conrad, Jon M., 2018. "Real Options for Endangered Species," Ecological Economics, Elsevier, vol. 144(C), pages 59-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Gautam & Konrad, Kai A., 2020. "Devil take the hindmost: Deflecting attacks to other defenders," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Subhasish M. Chowdhury & Iryna Topolyan, 2013. "The Attack-and-Defence Group Contests," University of East Anglia Applied and Financial Economics Working Paper Series 049, School of Economics, University of East Anglia, Norwich, UK..
    4. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Konrad, Kai A. & Morath, Florian, 2023. "How to preempt attacks in multi-front conflict with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 493-500.
    6. Nicola Dimitri, 2020. "Skills, Efficiency, and Timing in a Simple Attack and Defense Model," Decision Analysis, INFORMS, vol. 17(3), pages 227-234, September.
    7. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    8. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Rejoinder," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 521-524, October.
    9. Kjell Hausken, 2012. "Strategic Defense and Attack for Series and Parallel Reliability Systems: Reply to Rejoinder," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 517-519, October.
    10. Konrad, Kai A., 2020. "Attacking and defending multiple valuable secrets in a big data world," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1122-1129.
    11. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    12. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    13. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    16. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    17. Li, Qing & Li, Mingchu & Zhang, Runfa & Gan, Jianyuan, 2021. "A stochastic bilevel model for facility location-protection problem with the most likely interdiction strategy," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
    19. Deck, Cary & Foster, Joshua & Song, Hongwei, 2015. "Defense against an opportunistic challenger: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 242(2), pages 501-513.
    20. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:442:y:2021:i:c:s0304380021000016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.