IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00726-w.html
   My bibliography  Save this article

Risk-sensitive infinite-horizon discounted piecewise deterministic Markov decision processes

Author

Listed:
  • Yonghui Huang

    (Sun Yat-Sen University)

  • Zhaotong Lian

    (Faculty of Business Administration, University of Macau)

  • Xianping Guo

    (Sun Yat-Sen University)

Abstract

This paper deals with risk-sensitive piecewise deterministic Markov decision processes, where the expected exponential utility of an infinite-horizon discounted cost is minimized. Both the transition rate and cost rate are allowed to be unbounded. Based on a dynamic programming observation, we introduce an auxiliary function with the time as an additional variable to analyze the problem, which is different from those with the risk-sensitive parameter as an additional variable in previous works. Under suitable assumptions, we derive the associated Feynman-Kac’s formula, and then establish the associated Hamilton–Jacobi–Bellman equation with the time as a differential variable, which leads to the existence of optimal policies depending on the time, explicitly showing that the risk-sensitive discounted optimal policies are not stationary.

Suggested Citation

  • Yonghui Huang & Zhaotong Lian & Xianping Guo, 2022. "Risk-sensitive infinite-horizon discounted piecewise deterministic Markov decision processes," Operational Research, Springer, vol. 22(5), pages 5791-5816, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00726-w
    DOI: 10.1007/s12351-022-00726-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00726-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00726-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Guo & Qiuli Liu & Yi Zhang, 2019. "Finite horizon risk-sensitive continuous-time Markov decision processes with unbounded transition and cost rates," 4OR, Springer, vol. 17(4), pages 427-442, December.
    2. O. L. V. Costa & F. Dufour, 2021. "Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 327-357, April.
    3. Nicole Bäuerle & Ulrich Rieder, 2014. "More Risk-Sensitive Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 105-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingda Wei & Xian Chen, 2023. "Continuous-Time Markov Decision Processes Under the Risk-Sensitive First Passage Discounted Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 309-333, April.
    2. O. L. V. Costa & F. Dufour, 2021. "Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 327-357, April.
    3. Subrata Golui & Chandan Pal, 2022. "Risk-sensitive discounted cost criterion for continuous-time Markov decision processes on a general state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 219-247, April.
    4. Subrata Golui & Chandan Pal & Subhamay Saha, 2022. "Continuous-Time Zero-Sum Games for Markov Decision Processes with Discounted Risk-Sensitive Cost Criterion," Dynamic Games and Applications, Springer, vol. 12(2), pages 485-512, June.
    5. Bhabak, Arnab & Saha, Subhamay, 2022. "Risk-sensitive semi-Markov decision problems with discounted cost and general utilities," Statistics & Probability Letters, Elsevier, vol. 184(C).
    6. Rainer Schlosser, 2016. "Stochastic dynamic multi-product pricing with dynamic advertising and adoption effects," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(2), pages 153-169, April.
    7. Gustavo Portillo-Ramírez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2023. "Contractive approximations in average Markov decision chains driven by a risk-seeking controller," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 75-91, August.
    8. Tomasz R. Bielecki & Igor Cialenco & Andrzej Ruszczy'nski, 2022. "Risk Filtering and Risk-Averse Control of Markovian Systems Subject to Model Uncertainty," Papers 2206.09235, arXiv.org.
    9. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    10. Tomasz Kosmala & Randall Martyr & John Moriarty, 2020. "Markov risk mappings and risk-sensitive optimal prediction," Papers 2001.06895, arXiv.org, revised Sep 2022.
    11. Constantin Waubert de Puiseau & Richard Meyes & Tobias Meisen, 2022. "On reliability of reinforcement learning based production scheduling systems: a comparative survey," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 911-927, April.
    12. Nicole Bäauerle & Ulrich Rieder, 2017. "Partially Observable Risk-Sensitive Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1180-1196, November.
    13. Carlos Camilo-Garay & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2022. "Contractive Approximations in Risk-Sensitive Average Semi-Markov Decision Chains on a Finite State Space," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 271-291, January.
    14. Nicole Bäuerle & Alexander Glauner, 2021. "Minimizing spectral risk measures applied to Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 35-69, August.
    15. Bäuerle, Nicole & Jaśkiewicz, Anna, 2017. "Optimal dividend payout model with risk sensitive preferences," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 82-93.
    16. Rolando Cavazos-Cadena & Mario Cantú-Sifuentes & Imelda Cerda-Delgado, 2021. "Nash equilibria in a class of Markov stopping games with total reward criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 319-340, October.
    17. Adam Jonsson, 2023. "An axiomatic approach to Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 117-133, February.
    18. Naci Saldi & Tamer Bas¸ ar & Maxim Raginsky, 2020. "Approximate Markov-Nash Equilibria for Discrete-Time Risk-Sensitive Mean-Field Games," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1596-1620, November.
    19. Naci Saldi & Tamer Başar & Maxim Raginsky, 2023. "Partially Observed Discrete-Time Risk-Sensitive Mean Field Games," Dynamic Games and Applications, Springer, vol. 13(3), pages 929-960, September.
    20. Nicole Bauerle & Alexander Glauner, 2020. "Minimizing Spectral Risk Measures Applied to Markov Decision Processes," Papers 2012.04521, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00726-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.