IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00712-2.html
   My bibliography  Save this article

On general multi-server queues with non-poisson arrivals and medium traffic: a new approximation and a COVID-19 ventilator case study

Author

Listed:
  • Carlos Chaves

    (Boeing, Inc.)

  • Abhijit Gosavi

    (Missouri University of Science and Technology)

Abstract

We consider the multi-server, single-channel queue, i.e., a G/G/k queue with k identical servers in parallel, under the first-come-first-served discipline in which the inter-arrival process is non-Poisson, the service time has any given distribution, and traffic is of medium intensity. Such queues are common in factories, airports, and hospitals, where the inter-arrival times and service times are typically not exponentially distributed, but rather have double-tapering distributions whose probability density functions taper on both sides, e.g., gamma, triangular etc. For these conditions, a new closed-form approximation based on only the mean and variance of the two inputs, the inter-arrival and service times, is presented. Determining distributions of inputs typically requires additional human effort in terms of histogram-fitting and running a goodness-of-fit test, which is avoided here. The new approximation is tested on a variety of scenarios and its performance is benchmarked against simulation. Further, the new approximation is also implemented on a ventilator case study from the recent COVID-19 pandemic to demonstrate its utility in optimizing server capacity. The approximation provides errors typically in the range 1–15% and 31% in the worst case. In systems where data change rapidly and decisions must be made quickly, this approximation will be particularly useful.

Suggested Citation

  • Carlos Chaves & Abhijit Gosavi, 2022. "On general multi-server queues with non-poisson arrivals and medium traffic: a new approximation and a COVID-19 ventilator case study," Operational Research, Springer, vol. 22(5), pages 5205-5229, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00712-2
    DOI: 10.1007/s12351-022-00712-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00712-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00712-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabta, Boualem, 2013. "A hybrid method for performance analysis of G/G/m queueing networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 38-49.
    2. Saif Benjaafar & Joon-Seok Kim & N. Vishwanadham, 2004. "On the Effect of Product Variety in Production–Inventory Systems," Annals of Operations Research, Springer, vol. 126(1), pages 71-101, February.
    3. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    4. Lawrence W. Robinson & Rachel R. Chen, 2011. "Estimating the Implied Value of the Customer's Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 53-57, February.
    5. Toshikazu Kimura, 1986. "A Two-Moment Approximation for the Mean Waiting Time in the GI/G/s Queue," Management Science, INFORMS, vol. 32(6), pages 751-763, June.
    6. A. E. Eckberg, 1977. "Sharp Bounds on Laplace-Stieltjes Transforms, with Applications to Various Queueing Problems," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 135-142, May.
    7. A. Azadeh & M. S. Naghavi lhoseiny & V. Salehi, 2018. "Optimum alternatives of tandem G/G/K queues with disaster customers and retrial phenomenon: interactive voice response systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(3), pages 535-562, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subramani Palani Niranjan & Suthanthira Raj Devi Latha & Sorin Vlase, 2024. "Cost Optimization in Sintering Process on the Basis of Bulk Queueing System with Diverse Services Modes and Vacation," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    2. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    2. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    3. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    5. Sumi Kim & Seongmoon Kim, 2015. "Differentiated waiting time management according to patient class in an emergency care center using an open Jackson network integrated with pooling and prioritizing," Annals of Operations Research, Springer, vol. 230(1), pages 35-55, July.
    6. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    7. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    8. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    9. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    10. Yan Chen & Ward Whitt, 2020. "Algorithms for the upper bound mean waiting time in the GI/GI/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 327-356, April.
    11. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    12. Jeffrey M. Alden & Lawrence D. Burns & Theodore Costy & Richard D. Hutton & Craig A. Jackson & David S. Kim & Kevin A. Kohls & Jonathan H. Owen & Mark A. Turnquist & David J. Vander Veen, 2006. "General Motors Increases Its Production Throughput," Interfaces, INFORMS, vol. 36(1), pages 6-25, February.
    13. Tan, Baris, 1998. "Effects of variability on the due-time performance of a continuous materials flow production system in series," International Journal of Production Economics, Elsevier, vol. 54(1), pages 87-100, January.
    14. Muhammad El-Taha & Bacel Maddah, 2006. "Allocation of Service Time in a Multiserver System," Management Science, INFORMS, vol. 52(4), pages 623-637, April.
    15. Stefan Helber & Carolin Kellenbrink & Insa Südbeck, 2024. "Evaluation of stochastic flow lines with provisioning of auxiliary material," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 669-708, September.
    16. Nan Chen & Yuan Yuan & Shiyu Zhou, 2011. "Performance analysis of queue length monitoring of M/G/1 systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 782-794, December.
    17. Yan Chen & Ward Whitt, 2021. "Extremal GI/GI/1 queues given two moments: exploiting Tchebycheff systems," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 101-124, February.
    18. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    19. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    20. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00712-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.