IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i2d10.1007_s12351-020-00598-y.html
   My bibliography  Save this article

Diffusion of Innovations in Middle Eastern versus Western Markets: A Mathematical Computation Cellular Automata Simulation Model

Author

Listed:
  • Konstantinos Petridis

    (University of Macedonia)

  • Nikolaos E. Petridis

    (University of Macedonia)

Abstract

Simulation modelling has gained ground over the years since it can provide various scenarios applied to any scientific area. In this study, a stochastic cellular automata model is proposed, in which agents fall into three distinct categories (adopters, non-adopters and denials). Based on Hofstede’s cultural dimension individualism, we characterize three major international markets, as perfectly clustered (collective) to perfectly random (individualistic). We investigate innovation diffusion speed, in each network topology. At each time step, the decision of non-adopters to purchase innovative products, is affected by their immediate neighborhood (von Neumman). The speed of diffusion is evaluated using time at which sales reach 50% of market. Effects of simulation parameters on speed of diffusion, are assessed using a log-normal accelerated failure time model. Results demonstrate that diffusion of innovative products accelerates when innovators of a virtual economic system are placed according to a random network and when amount of innovators and imitators in the economic system increases. Slower innovative products’ diffusion process is a result of a large amount of denials and of how imitators are placed in the in the virtual economic system. Diffusion in small-world virtual economic systems lead to small time inflexion points very close to those of a random networked market.

Suggested Citation

  • Konstantinos Petridis & Nikolaos E. Petridis, 2022. "Diffusion of Innovations in Middle Eastern versus Western Markets: A Mathematical Computation Cellular Automata Simulation Model," Operational Research, Springer, vol. 22(2), pages 1597-1616, April.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00598-y
    DOI: 10.1007/s12351-020-00598-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00598-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00598-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter N. Golder & Gerard J. Tellis, 1997. "Will It Every Fly? Modeling the Takeoff of Really New Consumer Durables," Marketing Science, INFORMS, vol. 16(3), pages 256-270.
    2. Deepa Chandrasekaran & Gerard J. Tellis, 2008. "Global Takeoff of New Products: Culture, Wealth, or Vanishing Differences?," Marketing Science, INFORMS, vol. 27(5), pages 844-860, 09-10.
    3. A. Barrat & M. Weigt, 2000. "On the properties of small-world network models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 547-560, February.
    4. Goldenberg, J & Libai, B & Solomon, S & Jan, N & Stauffer, D, 2000. "Marketing percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 335-347.
    5. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    6. Samuel Thiriot & Jean-Daniel Kant, 2008. "Using Associative Networks To Represent Adopters' Beliefs In A Multiagent Model Of Innovation Diffusion," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 261-272.
    7. Hofstede, Geert, 2003. "What is culture? A reply to Baskerville," Accounting, Organizations and Society, Elsevier, vol. 28(7-8), pages 811-813.
    8. Stauffer, D. & Jan, N., 2000. "Sharp peaks in the percolation model for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 215-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolumbus, Yoav & Solomon, Sorin, 2021. "On the influence maximization problem and the percolation phase transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    3. Seung Ki Baek & Xavier Durang & Mina Kim, 2013. "Faster Is More Different: Mean-Field Dynamics of Innovation Diffusion," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-6, July.
    4. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    5. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    6. Tellis, Gerard J. & Chandrasekaran, Deepa, 2010. "Extent and impact of response biases in cross-national survey research," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 329-341.
    7. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
    8. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    9. Jiang, Yonglei & Liao, Feixiong & Jin, Lianjie, 2021. "Effects of locational accessibility on firm diffusion characteristics: The case of Sino-Europe Economic Corridor," Transport Policy, Elsevier, vol. 105(C), pages 80-93.
    10. Youseok Lee & Sang-Hoon Kim & Kyoung Cheon Cha, 2023. "The diffusion pattern of new products: evidence from the Korean movie industry," Asian Business & Management, Palgrave Macmillan, vol. 22(5), pages 1830-1847, November.
    11. van Everdingen, Y.M. & Fok, D. & Stremersch, S., 2008. "Modeling Global Spill-Over of New Product Takeoff," ERIM Report Series Research in Management ERS-2008-067-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Stefan Stremersch & Eitan Muller & Renana Peres, 2010. "Does new product growth accelerate across technology generations?," Marketing Letters, Springer, vol. 21(2), pages 103-120, June.
    13. Chandrasekaran, Deepa & Arts, Joep W.C. & Tellis, Gerard J. & Frambach, Ruud T., 2013. "Pricing in the international takeoff of new products," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 249-264.
    14. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    15. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    16. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    17. Rajshree Agarwal & Barry L. Bayus, 2002. "The Market Evolution and Sales Takeoff of Product Innovations," Management Science, INFORMS, vol. 48(8), pages 1024-1041, August.
    18. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    19. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    20. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00598-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.