IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0068583.html
   My bibliography  Save this article

Faster Is More Different: Mean-Field Dynamics of Innovation Diffusion

Author

Listed:
  • Seung Ki Baek
  • Xavier Durang
  • Mina Kim

Abstract

Based on a recent model of paradigm shifts by Bornholdt et al., we studied mean-field opinion dynamics in an infinite population where an infinite number of ideas compete simultaneously with their values publicly known. We found that a highly innovative society is not characterized by heavy concentration in highly valued ideas: Rather, ideas are more broadly distributed in a more innovative society with faster progress, provided that the rate of adoption is constant, which suggests a positive correlation between innovation and technological disparity. Furthermore, the distribution is generally skewed in such a way that the fraction of innovators is substantially smaller than has been believed in conventional innovation-diffusion theory based on normality. Thus, the typical adoption pattern is predicted to be asymmetric with slow saturation in the ideal situation, which is compared with empirical data sets.

Suggested Citation

  • Seung Ki Baek & Xavier Durang & Mina Kim, 2013. "Faster Is More Different: Mean-Field Dynamics of Innovation Diffusion," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-6, July.
  • Handle: RePEc:plo:pone00:0068583
    DOI: 10.1371/journal.pone.0068583
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068583
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0068583&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0068583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stauffer, D. & Jan, N., 2000. "Sharp peaks in the percolation model for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 215-219.
    2. Martins, André C.R. & Pereira, Carlos de B. & Vicente, Renato, 2009. "An opinion dynamics model for the diffusion of innovations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3225-3232.
    3. Goldenberg, J & Libai, B & Solomon, S & Jan, N & Stauffer, D, 2000. "Marketing percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 335-347.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    2. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    3. Konstantinos Petridis & Nikolaos E. Petridis, 2022. "Diffusion of Innovations in Middle Eastern versus Western Markets: A Mathematical Computation Cellular Automata Simulation Model," Operational Research, Springer, vol. 22(2), pages 1597-1616, April.
    4. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
    5. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    6. Kolumbus, Yoav & Solomon, Sorin, 2021. "On the influence maximization problem and the percolation phase transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    7. Jiang, Yonglei & Liao, Feixiong & Jin, Lianjie, 2021. "Effects of locational accessibility on firm diffusion characteristics: The case of Sino-Europe Economic Corridor," Transport Policy, Elsevier, vol. 105(C), pages 80-93.
    8. Silverberg, Gerald & Verspagen, Bart, 2002. "A Percolation Model of Innovation in Complex Technology," Research Memorandum 032, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    9. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    11. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    12. Gross, Bnaya & Bonamassa, Ivan & Havlin, Shlomo, 2021. "Interdependent transport via percolation backbones in spatial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    13. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    14. Solomon Sorin & Golo Natasa, 2013. "Minsky Financial Instability, Interscale Feedback, Percolation and Marshall–Walras Disequilibrium," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 3(3), pages 167-260, October.
    15. Fibich, Gadi & Levin, Tomer, 2020. "Percolation of new products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    17. Groot, Robert D., 2005. "Lévy distribution and long correlation times in supermarket sales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 501-514.
    18. Biondi, Yuri & Giannoccolo, Pierpaolo & Galam, Serge, 2012. "Formation of share market prices under heterogeneous beliefs and common knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5532-5545.
    19. Galam, Serge, 2010. "Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3619-3631.
    20. C.R. Martins, André, 2014. "Discrete opinion models as a limit case of the CODA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 352-357.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0068583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.