IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v207y2013i1p27-4110.1007-s10479-011-0927-y.html
   My bibliography  Save this article

A hyper-heuristic approach to sequencing by hybridization of DNA sequences

Author

Listed:
  • Jacek Blazewicz
  • Edmund Burke
  • Graham Kendall
  • Wojciech Mruczkiewicz
  • Ceyda Oguz
  • Aleksandra Swiercz

Abstract

In this paper we investigate the use of hyper-heuristic methodologies for predicting DNA sequences. In particular, we utilize Sequencing by Hybridization. We believe that this is the first time that hyper-heuristics have been investigated in this domain. A hyper-heuristic is provided with a set of low-level heuristics and the aim is to decide which heuristic to call at each decision point. We investigate three types of hyper-heuristics. Two of these (simulated annealing and tabu search) draw their inspiration from meta-heuristics. The choice function hyper-heuristic draws its inspiration from reinforcement learning. We utilize two independent sets of low-level heuristics. The first set is based on a previous tabu search method, with the second set being a significant extension to this basic set, including utilizing a different representation and introducing the definition of clusters. The datasets we use comprises two randomly generated datasets and also a publicly available biological dataset. In total, we carried out experiments using 70 different combinations of heuristics, using the three datasets mentioned above and investigating six different hyper-heuristic algorithms. Our results demonstrate the effectiveness of a hyper-heuristic approach to this problem domain. It is necessary to provide a good set of low-level heuristics, which are able to both intensify and diversify the search but this approach has demonstrated very encouraging results on this extremely difficult and important problem domain. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Jacek Blazewicz & Edmund Burke & Graham Kendall & Wojciech Mruczkiewicz & Ceyda Oguz & Aleksandra Swiercz, 2013. "A hyper-heuristic approach to sequencing by hybridization of DNA sequences," Annals of Operations Research, Springer, vol. 207(1), pages 27-41, August.
  • Handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:27-41:10.1007/s10479-011-0927-y
    DOI: 10.1007/s10479-011-0927-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0927-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0927-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Błażewicz & Fred Glover & Marta Kasprzak, 2004. "DNA Sequencing—Tabu and Scatter Search Combined," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 232-240, August.
    2. Blazewicz, J. & Formanowicz, P. & Kasprzak, M. & Markiewicz, W. T. & Weglarz, J., 2000. "Tabu search for DNA sequencing with false negatives and false positives," European Journal of Operational Research, Elsevier, vol. 125(2), pages 257-265, September.
    3. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazewicz, Jacek & Kasprzak, Marta & Kierzynka, Michal & Frohmberg, Wojciech & Swiercz, Aleksandra & Wojciechowski, Pawel & Zurkowski, Piotr, 2018. "Graph algorithms for DNA sequencing – origins, current models and the future," European Journal of Operational Research, Elsevier, vol. 264(3), pages 799-812.
    2. Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
    3. Aleksandra Swiercz & Wojciech Frohmberg & Michal Kierzynka & Pawel Wojciechowski & Piotr Zurkowski & Jan Badura & Artur Laskowski & Marta Kasprzak & Jacek Blazewicz, 2018. "GRASShopPER—An algorithm for de novo assembly based on GPU alignments," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    4. Olacir R. Castro & Gian Mauricio Fritsche & Aurora Pozo, 2018. "Evaluating selection methods on hyper-heuristic multi-objective particle swarm optimization," Journal of Heuristics, Springer, vol. 24(4), pages 581-616, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Contreras Bolton & Gustavo Gatica & Víctor Parada, 2013. "Automatically Generated Algorithms for the Vertex Coloring Problem," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    2. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    3. Jacek Blazewicz & Ceyda Oguz & Aleksandra Swiercz & Jan Weglarz, 2006. "DNA Sequencing by Hybridization via Genetic Search," Operations Research, INFORMS, vol. 54(6), pages 1185-1192, December.
    4. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    5. R Bai & E K Burke & G Kendall, 2008. "Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1387-1397, October.
    6. Zhang, Ji-Hong & Wu, Ling-Yun & Zhao, Yu-Ying & Zhang, Xiang-Sun, 2007. "An optimization approach to the reconstruction of positional DNA sequencing by hybridization with errors," European Journal of Operational Research, Elsevier, vol. 182(1), pages 413-427, October.
    7. Christine Mumford, 2010. "A multiobjective framework for heavily constrained examination timetabling problems," Annals of Operations Research, Springer, vol. 180(1), pages 3-31, November.
    8. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    9. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    10. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    11. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    12. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    13. Carsten Franke & Joachim Lepping & Uwe Schwiegelshohn, 2010. "Greedy scheduling with custom-made objectives," Annals of Operations Research, Springer, vol. 180(1), pages 145-164, November.
    14. Thepphakorn, Thatchai & Pongcharoen, Pupong & Hicks, Chris, 2014. "An ant colony based timetabling tool," International Journal of Production Economics, Elsevier, vol. 149(C), pages 131-144.
    15. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    16. G N Beligiannis & C Moschopoulos & S D Likothanassis, 2009. "A genetic algorithm approach to school timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 23-42, January.
    17. Jaime Miranda, 2010. "eClasSkeduler: A Course Scheduling System for the Executive Education Unit at the Universidad de Chile," Interfaces, INFORMS, vol. 40(3), pages 196-207, June.
    18. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    19. Sabar, Nasser R. & Ayob, Masri & Kendall, Graham & Qu, Rong, 2012. "A honey-bee mating optimization algorithm for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 533-543.
    20. Yu Lei & Jiao Shi, 2017. "A NNIA Scheme for Timetabling Problems," Journal of Optimization, Hindawi, vol. 2017, pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:27-41:10.1007/s10479-011-0927-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.