IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i1d10.1007_s12351-019-00481-5.html
   My bibliography  Save this article

Generating evacuation task plans for community typhoon emergencies: an integration of case-driven and model-driven approaches

Author

Listed:
  • Zhao-ge Liu

    (Harbin Institute of Technology)

  • Xiang-yang Li

    (Harbin Institute of Technology)

  • Dilawar Khan Durrani

    (Harbin Institute of Technology)

Abstract

In community emergency management, it is crucial to generate evacuation task plans (ETPs) to help reduce risks in complex disaster situations. Case-driven and model-driven approaches have their respective advantages in generating ETPs, which can complement each other. With case-driven approach, historical experience can be fully used to establish the relationship between typhoon scenarios and historical ETPs. Through model-driven approach, the continuity of ETPs can be guaranteed when required information to operate the plans is missing. This study aims at proposing an integrated approach that can combine the benefits of both case-driven approaches and model-driven approaches. Based on the structural modeling of evacuation tasks, this paper proposes an integrated approach to generate ETPs for community typhoon emergencies. Finally, a case that is based on actual problems is provided to verify the reasonability and effectiveness of the proposed method.

Suggested Citation

  • Zhao-ge Liu & Xiang-yang Li & Dilawar Khan Durrani, 2021. "Generating evacuation task plans for community typhoon emergencies: an integration of case-driven and model-driven approaches," Operational Research, Springer, vol. 21(1), pages 745-774, March.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-019-00481-5
    DOI: 10.1007/s12351-019-00481-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00481-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00481-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca R. Thompson & Dana Rose Garfin & Roxane Cohen Silver, 2017. "Evacuation from Natural Disasters: A Systematic Review of the Literature," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 812-839, April.
    2. Sunil Prashar & Rajib Shaw & Yukiko Takeuchi, 2013. "Community action planning in East Delhi: a participatory approach to build urban disaster resilience," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 429-448, April.
    3. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    4. Restrepo, Carlos E. & Simonoff, Jeffrey S. & Zimmerman, Rae, 2009. "Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 38-50.
    5. Meng Zhang & Guy G. Gable, 2017. "A Systematic Framework for Multilevel Theorizing in Information Systems Research," Information Systems Research, INFORMS, vol. 28(2), pages 203-224, June.
    6. Lili Yang & Guofeng Su & Hongyong Yuan, 2012. "Design Principles of Integrated Information Platform for Emergency Responses: The Case of 2008 Beijing Olympic Games," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 761-786, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheu, Jiuh-Biing, 2024. "Mass evacuation planning for disasters management: A household evacuation route choice behavior analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    2. Bayram, Vedat & Yaman, Hande, 2024. "A joint demand and supply management approach to large scale urban evacuation planning: Evacuate or shelter-in-place, staging and dynamic resource allocation," European Journal of Operational Research, Elsevier, vol. 313(1), pages 171-191.
    3. Vaezi, Ali & Verma, Manish, 2018. "Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 98-111.
    4. Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    5. Afkham, Maryam & Ramezanian, Reza & Shahparvari, Shahrooz, 2022. "Balancing traffic flow in the congested mass self-evacuation dynamic network under tight preparation budget: An Australian bushfire practice," Omega, Elsevier, vol. 111(C).
    6. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    7. Praveen Maghelal & Xiangyu Li & Walter Gillis Peacock, 2017. "Highway congestion during evacuation: examining the household’s choice of number of vehicles to evacuate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1399-1411, July.
    8. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    9. Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
    10. Natalie M. Scala & Allison C. Reilly & Paul L. Goethals & Michel Cukier, 2019. "Risk and the Five Hard Problems of Cybersecurity," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2119-2126, October.
    11. Xuedong Yan & Xiaobing Liu & Yulei Song, 2018. "Optimizing evacuation efficiency under emergency with consideration of social fairness based on a cell transmission model," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    12. Möhlmann, Mareike, 2021. "Unjustified trust beliefs: Trust conflation on sharing economy platforms," Research Policy, Elsevier, vol. 50(3).
    13. Singh, Abhishek Narain & Gupta, M.P. & Ojha, Amitabh, 2014. "Identifying critical infrastructure sectors and their dependencies: An Indian scenario," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(2), pages 71-85.
    14. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Pillac, Victor & Van Hentenryck, Pascal & Even, Caroline, 2016. "A conflict-based path-generation heuristic for evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 136-150.
    16. Peng Liu & Run Yang & Zhigang Xu, 2019. "How Safe Is Safe Enough for Self‐Driving Vehicles?," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 315-325, February.
    17. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    18. Dominic Balog‐Way & Katherine McComas & John Besley, 2020. "The Evolving Field of Risk Communication," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2240-2262, November.
    19. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    20. Jiang-Hua Zhang & Hai-Yue Liu & Rui Zhu & Yang Liu, 2017. "Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation," Complexity, Hindawi, vol. 2017, pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:1:d:10.1007_s12351-019-00481-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.