IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v19y2019i1d10.1007_s12351-016-0283-4.html
   My bibliography  Save this article

A mixed integer nonlinear programming model for biomass production

Author

Listed:
  • J. Contreras

    (Universidad CentroOccidental Lisandro Alvarado (UCLA))

  • H. Lara

    (Universidad CentroOccidental Lisandro Alvarado (UCLA))

  • G. Nouel-Borges

    (Biominbloq CA.)

Abstract

In this paper, a nonlinear model to maximize biomass production with specific nutritional quality is proposed. The model decides about kind of grasses and legumes to cultivate, quantities of each grasses and legumes chosen, the use of resources, and the proper time of harvest at which the biomass with specific nutritional quality is maximized. Model works with sufficient information about biomass yield, nutrient content, water requirements and fertilizer requirements of several crops, and it can explore all possible harvest times and choose the right time in which biomass production is maximized with desired nutritional quality. Furthermore, the solution gives to the producers additional information on weekly irrigation plan and weekly fertilizers plan for m2 of cultivated grass. The model was tested on six scenarios using GAMS and obtained solutions are the global solution in each scenario.

Suggested Citation

  • J. Contreras & H. Lara & G. Nouel-Borges, 2019. "A mixed integer nonlinear programming model for biomass production," Operational Research, Springer, vol. 19(1), pages 39-57, March.
  • Handle: RePEc:spr:operea:v:19:y:2019:i:1:d:10.1007_s12351-016-0283-4
    DOI: 10.1007/s12351-016-0283-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0283-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0283-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrell, Per J. & Stam, Antonie & Fischer, Gunther W., 2004. "Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya," European Journal of Operational Research, Elsevier, vol. 158(1), pages 194-217, October.
    2. Vassalos, Michael & Dillon, Carl R. & Freshwater, David & Karanikolas, Pavlos, 2010. "Modeling Multifunctionality Of Agriculture At A Farm-Level: The Case Of Kerkini District, Northern Greece," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 4(3-4), pages 1-6.
    3. Munford, Alan G., 1996. "The use of iterative linear programming in practical applications of animal diet formulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 42(2), pages 255-261.
    4. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    5. Frederick V. Waugh, 1951. "The Minimum-Cost Dairy FeedAn Application of "Linear Programming"," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 33(3), pages 299-310.
    6. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    7. Rehman, Tahir & Romero, Carlos, 1987. "Goal programming with penalty functions and livestock ration formulation," Agricultural Systems, Elsevier, vol. 23(2), pages 117-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosshairy Abd. Rahman & Graham Kendall & Razamin Ramli & Zainoddin Jamari & Ku Ruhana Ku-Mahamud, 2017. "Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints," Complexity, Hindawi, vol. 2017, pages 1-12, November.
    2. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    3. J. Žgajnar & L. Juvančič & S. Kavčič, 2009. "Combination of linear and weighted goal programming with penalty function in optimisation of a daily dairy cow ration," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 55(10), pages 492-500.
    4. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    5. Benjamin Beach & Robert Hildebrand & Joey Huchette, 2022. "Compact mixed-integer programming formulations in quadratic optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 869-912, December.
    6. Bahman Kalantari & Ansuman Bagchi, 1990. "An algorithm for quadratic zero‐one programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 527-538, August.
    7. Frison, Lilli & Kollmar, Manuel & Oliva, Axel & Bürger, Adrian & Diehl, Moritz, 2024. "Model predictive control of bidirectional heat transfer in prosumer-based solar district heating networks," Applied Energy, Elsevier, vol. 358(C).
    8. Flores, Salvador, 2015. "SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression," European Journal of Operational Research, Elsevier, vol. 246(1), pages 44-50.
    9. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    10. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    11. Gjerdrum, Jonatan & Shah, Nilay & Papageorgiou, Lazaros G., 2002. "Fair transfer price and inventory holding policies in two-enterprise supply chains," European Journal of Operational Research, Elsevier, vol. 143(3), pages 582-599, December.
    12. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    13. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    14. Yiping Jiang & Liangqi Chen & Yan Fang, 2018. "Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products in One-Belt and One-Road Context," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    15. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    16. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    17. J. M. Antón & J. B. Grau & J. M. Cisneros & A. M. Tarquis & F. V. Laguna & J. J. Cantero & D. Andina & E. Sánchez, 2016. "Discrete multi-criteria methods for lands use and conservation planning on La Colacha in Arroyos Menores (Río Cuarto, Province of Córdoba, Argentina)," Annals of Operations Research, Springer, vol. 245(1), pages 315-336, October.
    18. Behdad Beheshti & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2016. "Exact solution approaches for bilevel assignment problems," Computational Optimization and Applications, Springer, vol. 64(1), pages 215-242, May.
    19. Fishburn, Peter C. & LaValle, Irving H., 1996. "Binary interactions and subset choice," European Journal of Operational Research, Elsevier, vol. 92(1), pages 182-192, July.
    20. Serigne Gueye & Philippe Michelon, 2005. "“Miniaturized” Linearizations for Quadratic 0/1 Problems," Annals of Operations Research, Springer, vol. 140(1), pages 235-261, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:19:y:2019:i:1:d:10.1007_s12351-016-0283-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.