IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v199y2012i1p269-28410.1007-s10479-011-1056-3.html
   My bibliography  Save this article

Parallel hybrid heuristics for the permutation flow shop problem

Author

Listed:
  • Martín Ravetti
  • Carlos Riveros
  • Alexandre Mendes
  • Mauricio Resende
  • Panos Pardalos

Abstract

This paper addresses the Permutation Flowshop Problem with minimization of makespan, which is denoted by Fm|prmu|C max . In the permutational scenario, the sequence of jobs has to remain the same in all machines. The Flowshop Problem (FSP) is known to be NP-hard when more than three machines are considered. Thus, for medium and large scale instances, high-quality heuristics are needed to find good solutions in reasonable time. We propose and analyse parallel hybrid search methods that fully use the computational power of current multi-core machines. The parallel methods combine a memetic algorithm (MA) and several iterated greedy algorithms (IG) running concurrently. Two test scenarios were included, with short and long CPU times. The tests were conducted on the set of benchmark instances introduced by Taillard (Eur. J. Oper. Res. 64:278–285, 1993 ), commonly used to assess the performance of new methods. Results indicate that the use of the MA to manage a pool of solutions is highly effective, allowing the improvement of the best known upper bound for one of the instances. Copyright Springer Science & Business Media, LLC 2012

Suggested Citation

  • Martín Ravetti & Carlos Riveros & Alexandre Mendes & Mauricio Resende & Panos Pardalos, 2012. "Parallel hybrid heuristics for the permutation flow shop problem," Annals of Operations Research, Springer, vol. 199(1), pages 269-284, October.
  • Handle: RePEc:spr:annopr:v:199:y:2012:i:1:p:269-284:10.1007/s10479-011-1056-3
    DOI: 10.1007/s10479-011-1056-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-1056-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-1056-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    2. M S Nagano & J V Moccellin, 2002. "A high quality solution constructive heuristic for flow shop sequencing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1374-1379, December.
    3. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
    4. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    5. David G. Dannenbring, 1977. "An Evaluation of Flow Shop Sequencing Heuristics," Management Science, INFORMS, vol. 23(11), pages 1174-1182, July.
    6. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    7. Taillard, E., 1990. "Some efficient heuristic methods for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 65-74, July.
    8. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    9. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    10. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    11. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
    2. Taha Keshavarz & Nasser Salmasi & Mohsen Varmazyar, 2015. "Minimizing total completion time in the flexible flowshop sequence-dependent group scheduling problem," Annals of Operations Research, Springer, vol. 226(1), pages 351-377, March.
    3. Schryen, Guido, 2020. "Parallel computational optimization in operations research: A new integrative framework, literature review and research directions," European Journal of Operational Research, Elsevier, vol. 287(1), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    2. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    3. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    4. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    5. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    6. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    7. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    8. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    9. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    10. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    11. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    12. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    13. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    14. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    15. Benavides, Alexander J. & Vera, Antony, 2022. "The reversibility property in a job-insertion tiebreaker for the permutational flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 407-421.
    16. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    17. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    18. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    19. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    20. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:199:y:2012:i:1:p:269-284:10.1007/s10479-011-1056-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.