IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i2d10.1007_s11069-019-03778-y.html
   My bibliography  Save this article

Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India

Author

Listed:
  • Rajinder Parshad

    (Geological Survey of India)

  • Parveen Kumar

    (Wadia Institute of Himalayan Geology)

  • Snehmani

    (Defence Research and Development Organization (DRDO))

  • P. K. Srivastva

    (University of Petroleum and Energy Studies)

Abstract

Snow avalanche can be triggered by different mechanisms including metrological conditions, snow pack stability together with external factor such as seismic tremor and explosions. The snow avalanche triggered by seismic event is very important hazard phenomena in the snow covered region. In the present paper, investigation of earthquake-induced snow avalanches is introduced in Nubra–Shyok region of Western Himalaya, India. Compilation of seismogenic snow avalanche and earthquakes occurred in the Nubra–Shyok region during the period of 2010–2012 is made, which reveals that out of 393 natural avalanches, 81 avalanches was triggered due to the earthquake during this period. The local earthquakes occurred in Nubra–Shyok region, recorded by a local seismic network, are utilized for this work. The same date of occurrence of earthquakes and snow avalanches confirm seismogenic snow avalanche in this region. In the present work, avalanches triggered due to natural seismicity during the period of 2010–2012 related with earthquakes of magnitude 1.7 ≤ Mw ≤ 4.4 and distance of induced snow avalanche from epicenter of earthquakes, i.e., 4–92 km. In this study, lower bound limits of earthquake magnitudes, which cause avalanches, are established up to the distance of 92 km. Relation between earthquake magnitude and distance of induced snow avalanche from epicenter reveals that an earthquake of magnitude 1.4 (Mw) can trigger a snow avalanche as distance approaches to zero from earthquake epicenter. The comparison of obtained relation with other similar types of studies, i.e., Keefer (Geol Soc Am Bull 95:406–421, 1984), Podolskiy et al. (J Glaciol 56(197):431–446, 2010a) confirms the reliability of the present work.

Suggested Citation

  • Rajinder Parshad & Parveen Kumar & Snehmani & P. K. Srivastva, 2019. "Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 843-855, November.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03778-y
    DOI: 10.1007/s11069-019-03778-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03778-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03778-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parveen Kumar & A. Joshi & Sushil Kumar & Sandeep & Sohan Lal, 2018. "Determination of site effect and anelastic attenuation at Kathmandu, Nepal Himalaya region and its use in estimation of source parameters of 25 April 2015 Nepal earthquake Mw = 7.8 and its aftershocks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1003-1023, April.
    2. Kristin Marano & David Wald & Trevor Allen, 2010. "Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 319-328, February.
    3. Sandeep & A. Joshi & Kamal & Parveen Kumar & Ashvini Kumar & Piu Dhibar, 2015. "Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi-empirical technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 933-957, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    2. Zheng He & Negar Elhami Khorasani, 2022. "Identification and hierarchical structure of cause factors for fire following earthquake using data mining and interpretive structural modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 947-976, May.
    3. Sonia Devi & Sandeep & Parveen Kumar & Monika & A. Joshi, 2022. "Modelling of 2016 Kumamoto earthquake by integrating site effect in semi-empirical technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1931-1950, March.
    4. Chuang Song & Chen Yu & Zhenhong Li & Stefano Utili & Paolo Frattini & Giovanni Crosta & Jianbing Peng, 2022. "Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    6. Carlo Cauzzi & Donat Fäh & David J. Wald & John Clinton & Stéphane Losey & Stefan Wiemer, 2018. "ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1211-1235, June.
    7. Junmei Kang & Zhihua Wang & Hongbin Cheng & Jun Wang & Xiaoliang Liu, 2022. "Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    8. Yuli Zhang & Amber R. Richter & Jeyaveerasingam George Shanthikumar & Zuo‐Jun Max Shen, 2022. "Dynamic Inventory Relocation in Disaster Relief," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1052-1070, March.
    9. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03778-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.