IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i2p933-957.html
   My bibliography  Save this article

Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi-empirical technique

Author

Listed:
  • Sandeep
  • A. Joshi
  • Kamal
  • Parveen Kumar
  • Ashvini Kumar
  • Piu Dhibar

Abstract

The Niigata prefecture in Japan was devastated by a large shallow earthquake (M w 6.6, M JMA 6.8) on July 16, 2007. This earthquake has been recorded at 305 stations of Kiban Kyoshin network (KiK-net). Source model of this earthquake has been computed from accelerograms recorded by KiK-net at near-field stations surrounding source of earthquake. Several isolated wave packets were seen in recorded accelerograms at near-field stations surrounding source of this earthquake. Each wave packet in recorded accelerogram represents an isolated patch of envelope of accelerogram released from a rupture plane and is considered to be an independent source of strong motion generation area. Three different isolated wave packets have been identified within the rupture plane of the Niigata earthquake from recorded accelerograms. These isolated wave packets were considered as strong motion generation areas (SMGAs) in the rupture plane. Source parameters of each SMGA were calculated from the source displacement spectra. The approximate locations of SMGAs over the source fault were estimated using spatio-temporal variation of 48 aftershocks recorded by KiK-net and K-NET. Modified semi-empirical method has been used to simulate strong ground motion at various stations. Comparison of the observed and simulated acceleration waveforms is made in terms of root-mean-square error. Comparison of NS and EW component of observed and simulated records at eight stations confirms the suitability of final source model consisting of three SMGAs and efficacy of the modified semi-empirical technique to simulate strong ground motion. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Sandeep & A. Joshi & Kamal & Parveen Kumar & Ashvini Kumar & Piu Dhibar, 2015. "Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi-empirical technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 933-957, June.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:2:p:933-957
    DOI: 10.1007/s11069-015-1636-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1636-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1636-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Joshi & Sandeep & Kamal, 2014. "Modeling of strong motion generation areas of the 2011 Tohoku, Japan earthquake using modified semi-empirical technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 587-609, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajinder Parshad & Parveen Kumar & Snehmani & P. K. Srivastva, 2019. "Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 843-855, November.
    2. Sonia Devi & Sandeep & Parveen Kumar & Monika & A. Joshi, 2022. "Modelling of 2016 Kumamoto earthquake by integrating site effect in semi-empirical technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1931-1950, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Joshi & Chun-Hsiang Kuo & Piu Dhibar & Sandeep & M. Sharma & Kuo-Liang Wen & Che-Min Lin, 2015. "Simulation of the records of the 27 March 2013 Nantou Taiwan earthquake using modified semi-empirical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 995-1020, September.
    2. Sandeep & A. Joshi & Kamal & Parveen Kumar & Pushpa Kumari, 2014. "Modeling of strong motion generation area of the Uttarkashi earthquake using modified semiempirical approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 2041-2066, September.
    3. Sandeep & A. Joshi & Kamal & Parveen Kumar & Ashvini Kumar, 2014. "Effect of frequency-dependent radiation pattern in the strong motion simulation of the 2011 Tohoku earthquake, Japan, using modified semi-empirical method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1499-1521, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:2:p:933-957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.