IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i1d10.1007_s11069-017-3131-9.html
   My bibliography  Save this article

A model for the representation of emergency cases

Author

Listed:
  • Chao Zhang

    (China National Institute of Standardization)

  • Jiansong Wu

    (China University of Mining and Technology)

  • Chao Huang

    (Sichuan University)

  • Bo Jiang

    (Tsinghua University)

Abstract

An emergency case contains important information and knowledge for emergency management, such as the evolution law of incidents, the vulnerability of hazard-affected carriers and the practice of emergency response. To respond effectively, we should learn from these valuable kinds of information and knowledge and utilize them. Most models of emergency cases are established based on ontology methodology. Important emergency information is semantically expressed and then analyzed by the text mining or cluster analysis methods. This type of methodology is at a disadvantage for obtaining the knowledge contained in the cases. In addition, some emergency case representation models are established using the event tree method or state chart method. However, not all the important information for emergencies can be integrated into these diagrams. The knowledge elements are not expressed with good structure, which results in a disadvantage to case-based reasoning and knowledge mining. In this paper, a comprehensive model for the representation of emergency cases is established. The proposed model combines the advantages of several conventional methods, including event tree, Bayesian conditional probability and information structured expression. Hazard-affected carrier properties, incident evolution laws and emergency response experience can be integrated and represented, which provides a good basis to employ data mining technology. With the proposed model, the general laws and successful emergency response experience contained in massive emergency cases can be obtained. Furthermore, the case-based reasoning and knowledge mining models for risk assessment, emergency preparedness and prevention, and decision-making can be developed based on effectively represented emergency cases.

Suggested Citation

  • Chao Zhang & Jiansong Wu & Chao Huang & Bo Jiang, 2018. "A model for the representation of emergency cases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 337-351, March.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3131-9
    DOI: 10.1007/s11069-017-3131-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3131-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3131-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buzna, Lubos & Peters, Karsten & Helbing, Dirk, 2006. "Modelling the dynamics of disaster spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 132-140.
    2. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    3. K. Peters & L. Buzna & D. Helbing, 2008. "Modelling of cascading effects and efficient response to disaster spreading in complex networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 46-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    2. Xiao Zhang & Xiaofeng Hu & Yiping Bai & Jiansong Wu, 2020. "Risk Assessment of Gas Leakage from School Laboratories Based on the Bayesian Network," IJERPH, MDPI, vol. 17(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    3. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    6. Chen, Yingzhen & Zhao, Qiuhong & Huang, Kai & Xi, Xunzhuo, 2022. "A Bi-objective optimization model for contract design of humanitarian relief goods procurement considering extreme disasters," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    7. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    8. Olga Bucovetchi & Alexandru Georgescu & Dorel Badea & Radu D. Stanciu, 2019. "Agent-Based Modeling (ABM): Support for Emphasizing the Air Transport Infrastructure Dependence of Space Systems," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    9. Huicong Jia & Fang Chen & Donghua Pan, 2019. "Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018," IJERPH, MDPI, vol. 16(23), pages 1-12, November.
    10. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    11. He, Zhidong & Van Mieghem, Piet, 2018. "The spreading time in SIS epidemics on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 317-330.
    12. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    13. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Zhiru Wang & Ran S. Bhamra & Min Wang & Han Xie & Lili Yang, 2020. "Critical Hazards Identification and Prevention of Cascading Escalator Accidents at Metro Rail Transit Stations," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    15. Yacov Y. Haimes & Kenneth Crowther & Barry M. Horowitz, 2008. "Homeland security preparedness: Balancing protection with resilience in emergent systems," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 287-308, December.
    16. Zhang, Zi-li & Zhang, Zi-qiong, 2009. "An interplay model for rumour spreading and emergency development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4159-4166.
    17. Lu, Qing-Chang & Li, Jing & Xu, Peng-Cheng & Zhang, Lei & Cui, Xin, 2024. "Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Li, Jian & Chen, Changkun, 2014. "Modeling the dynamics of disaster evolution along causality networks with cycle chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 251-264.
    19. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.
    20. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3131-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.