IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i1d10.1007_s11069-017-3080-3.html
   My bibliography  Save this article

Air quality index assessment prelude to mitigate environmental hazards

Author

Listed:
  • Sutapa Chaudhuri

    (University of Calcutta)

  • Arumita Roy Chowdhury

    (University of Calcutta)

Abstract

Air pollution has been a major transboundary problem and a matter of global concern for decades. Climate change and air pollution are closely coupled. Just as air pollution can have adverse effects on human health and ecosystems, it can also impact the earth’s climate. As we enter an era of rapid climate change, the implications for air quality need to be better understood, both for the purpose of air quality management and as one of the societal consequences of climate change. In this study, an attempt has been made to estimate the current air quality to forecast the air quality index of an urban station Kolkata (22.65°N, 88.45°E), India for the next 5 years with neural network models. The annual and seasonal variability in the air quality indicates that the winter season is mostly affected by the pollutants. Air quality index (AQI) is estimated as a geometric mean of the pollutants considered. Different neural network models are attempted to select the best model to forecast the AQI of Kolkata. The meteorological parameters and AQI of the previous day are utilized to train the models to forecast the AQI of the next day during the period from 2003 to 2012. The selection of the best model is made after validation with observation from 2013 to 2015. The radial basis functional (RBF) model is found to be the best network model for the purpose. The RBF model with various architectures is tried to obtain precise forecast with minimum error. RBF of 5:5-91-1:1 structure is found to be the best fit for forecasting the AQI of Kolkata.

Suggested Citation

  • Sutapa Chaudhuri & Arumita Roy Chowdhury, 2018. "Air quality index assessment prelude to mitigate environmental hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 1-17, March.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3080-3
    DOI: 10.1007/s11069-017-3080-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3080-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3080-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutapa Chaudhuri & Debashree Dutta & Sayantika Goswami & Anirban Middey, 2013. "Intensity forecast of tropical cyclones over North Indian Ocean using multilayer perceptron model: skill and performance verification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 97-113, January.
    2. Debashree Dutta & Sutapa Chaudhuri, 2015. "Nowcasting visibility during wintertime fog over the airport of a metropolis of India: decision tree algorithm and artificial neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1349-1368, January.
    3. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salem Badjoudj & Aissa Benselhoub & Souad Narsis & Nadiia Dovbash & Abdelaziz Idres & Khadouja Marame Benghadab & Fares Boutarfa & Mohamed Bounouala & Stefano Bellucci, 2023. "Assessment of air quality index in Annaba," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 24-32, July.
    2. Ying Wang & Jianzhou Wang & Hongmin Li & Hufang Yang & Zhiwu Li, 2022. "Multi‐step air quality index forecasting via data preprocessing, sequence reconstruction, and improved multi‐objective optimization algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1483-1511, November.
    3. Jianzhou Wang & Pei Du, 2021. "Quarterly PM2.5 prediction using a novel seasonal grey model and its further application in health effects and economic loss assessment: evidences from Shanghai and Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 889-909, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Bukhari & Usman Qamar & Ume Ghazia, 0. "URWF: user reputation based weightage framework for twitter micropost classification," Information Systems and e-Business Management, Springer, vol. 0, pages 1-37.
    2. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    3. Asad Bukhari & Usman Qamar & Ume Ghazia, 2017. "URWF: user reputation based weightage framework for twitter micropost classification," Information Systems and e-Business Management, Springer, vol. 15(3), pages 623-659, August.
    4. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    5. Malay Kumar Pramanik & Sumantra Sarathi Biswas & Biswajit Mondal & Raghunath Pal, 2016. "Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna–Godavari delta region, Andhra Pradesh, east coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1635-1655, December.
    6. Fhulufhelo Walter Mugware & Caston Sigauke & Thakhani Ravele, 2024. "Evaluating Wind Speed Forecasting Models: A Comparative Study of CNN, DAN2, Random Forest and XGBOOST in Diverse South African Weather Conditions," Forecasting, MDPI, vol. 6(3), pages 1-28, August.
    7. Jordan French, 2016. "Back to the Future Betas: Empirical Asset Pricing of US and Southeast Asian Markets," IJFS, MDPI, vol. 4(3), pages 1-13, July.
    8. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    9. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    10. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    11. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    12. Malay Kumar Pramanik & Poli Dash & Dimple Behal, 2021. "Improving outcomes for socioeconomic variables with coastal vulnerability index under significant sea-level rise: an approach from Mumbai coasts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13819-13853, September.
    13. Debashree Dutta & Sutapa Chaudhuri, 2015. "Nowcasting visibility during wintertime fog over the airport of a metropolis of India: decision tree algorithm and artificial neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1349-1368, January.
    14. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    15. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    16. Zaili Yang & Esin Erol Mehmed, 2019. "Artificial neural networks in freight rate forecasting," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(3), pages 390-414, September.
    17. Hakob GRIGORYAN, 2015. "Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(2), pages 14-23, October.
    18. Malay Kumar Pramanik, 2017. "Impacts of predicted sea level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1343-1366, August.
    19. M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
    20. Luna, Ivette & Ballini, Rosangela, 2011. "Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 708-724, July.

    More about this item

    Keywords

    ANN; Pollution; MLP; T; Rh; Wind speed; Visibility; NO2; SO2; PM10;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:1:d:10.1007_s11069-017-3080-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.