IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04614-y.html
   My bibliography  Save this article

Quarterly PM2.5 prediction using a novel seasonal grey model and its further application in health effects and economic loss assessment: evidences from Shanghai and Tianjin, China

Author

Listed:
  • Jianzhou Wang

    (Dongbei University of Finance and Economics)

  • Pei Du

    (Dongbei University of Finance and Economics
    Xi′an Jiaotong University)

Abstract

Previous research only focused on PM2.5 prediction without considering its further application or just evaluated the past years' health effects and economic losses caused by PM2.5 without studying the future scenarios. Thus, a novel hybrid system using a seasonal grey model with the fractional order accumulation, called SFGM (1, 1), and health economic loss assessment model was developed in this study, which can not only perform quarterly PM2.5 prediction, but also estimate its health effects and economic losses. The results indicated that (1) the designed SFGM (1, 1) can not only reflect the seasonal fluctuation, but also predict the seasonal PM2.5 concentrations with higher prediction accuracy in both out-and-in-samples than comparison models. (2) The total economic losses in 2020 of Shanghai and Tianjin will be 6867.25 million yuan (95% CI: 3072.34–10704.47) and 4869.20 million yuan (95% CI: 2194.50–7532.00), respectively, showing that Shanghai will suffer bigger economic losses than Tianjin. (3) The economic loss caused by the premature deaths attributable to PM2.5 is the largest, accounting for more than 70% of the total economic loss. Finally, the findings can help policymakers to formulate more policies and take effective measures to improve public awareness of environmental protection.

Suggested Citation

  • Jianzhou Wang & Pei Du, 2021. "Quarterly PM2.5 prediction using a novel seasonal grey model and its further application in health effects and economic loss assessment: evidences from Shanghai and Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 889-909, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04614-y
    DOI: 10.1007/s11069-021-04614-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04614-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04614-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuewei Hou & Dongdong Fei & Hanqing Kang & Yinglong Zhang & Jinhui Gao, 2018. "Seasonal statistical analysis of the impact of meteorological factors on fine particle pollution in China in 2013–2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 677-698, September.
    2. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    3. Yang, Siyuan & Fang, Delin & Chen, Bin, 2019. "Human health impact and economic effect for PM2.5 exposure in typical cities," Applied Energy, Elsevier, vol. 249(C), pages 316-325.
    4. Sutapa Chaudhuri & Arumita Roy Chowdhury, 2018. "Air quality index assessment prelude to mitigate environmental hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 1-17, March.
    5. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    6. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    2. Xiaojun Guo & Rui Zhang & Houxue Shen & Yingjie Yang, 2022. "An Optimized Damping Grey Population Prediction Model and Its Application on China’s Population Structure Analysis," IJERPH, MDPI, vol. 19(20), pages 1-25, October.
    3. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Victoria Y. Fan & Dean T. Jamison & Lawrence H. Summers, 2016. "The Inclusive Cost of Pandemic Influenza Risk," NBER Working Papers 22137, National Bureau of Economic Research, Inc.
    3. Henrik Andersson & James Hammitt & Gunnar Lindberg & Kristian Sundström, 2013. "Willingness to Pay and Sensitivity to Time Framing: A Theoretical Analysis and an Application on Car Safety," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 437-456, November.
    4. Acland, Daniel J. & Greenberg, David H., 2023. "Distributional weighting and welfare/equity tradeoffs: a new approach," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 14(1), pages 68-92, March.
    5. Herrera-Araujo, Daniel & Rochaix, Lise, 2020. "Does the Value per Statistical Life vary with age or baseline health? Evidence from a compensating wage study in France," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    6. Patrick Carlin & Brian E. Dixon & Kosali I. Simon & Ryan Sullivan & Coady Wing, 2022. "How Undervalued is the Covid-19 Vaccine? Evidence from Discrete Choice Experiments and VSL Benchmarks," NBER Working Papers 30118, National Bureau of Economic Research, Inc.
    7. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    8. Detlof von Winterfeldt & R. Scott Farrow & Richard S. John & Jonathan Eyer & Adam Z. Rose & Heather Rosoff, 2020. "Assessing the Benefits and Costs of Homeland Security Research: A Risk‐Informed Methodology with Applications for the U.S. Coast Guard," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 450-475, March.
    9. Arthur E. Attema & Han Bleichrodt & Olivier L’Haridon & Patrick Peretti-Watel & Valérie Seror, 2018. "Discounting health and money: New evidence using a more robust method," Journal of Risk and Uncertainty, Springer, vol. 56(2), pages 117-140, April.
    10. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.
    11. Gianmarco León & Edward Miguel, 2017. "Risky Transportation Choices and the Value of a Statistical Life," American Economic Journal: Applied Economics, American Economic Association, vol. 9(1), pages 202-228, January.
    12. Fan, Victoria Y & Jamison, Dean T & Summers, Lawrence H, 2018. "Pandemic risk: how large are the expected losses?," Scholarly Articles 35014363, Harvard Kennedy School of Government.
    13. Hultkrantz, Lars & Svensson, Mikael, 2012. "A Comparison of Benefit Cost and Cost Utility Analysis in Practice: Divergent Policies in Sweden," Working Papers 2012:5, Örebro University, School of Business.
    14. Treich, Nicolas & Yang, Yuting, 2021. "Public safety under imperfect taxation," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    15. Christopher Hansman & Jonas Hjort & Gianmarco León, 2015. "Firm's response and unintended health consequences of industrial regulations," Economics Working Papers 1469, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Scotton Carol R., 2013. "New risk rates, inter-industry differentials and the magnitude of VSL estimates," Journal of Benefit-Cost Analysis, De Gruyter, vol. 4(1), pages 39-80, March.
    17. Fouquet, Roger, 2011. "Long run trends in energy-related external costs," Ecological Economics, Elsevier, vol. 70(12), pages 2380-2389.
    18. Susan L. Greco & Anna Belova & Jin Huang, 2016. "Benefits of Decreased Mortality Risk from Reductions in Primary Mobile Source Fine Particulate Matter: A Limited Data Approach for Urban Areas Worldwide," Risk Analysis, John Wiley & Sons, vol. 36(9), pages 1783-1802, September.
    19. León-Ciliotta, Gianmarco & Miguel, Edward, 2013. "Transportation Choices and the Value of Statistical Life," Department of Economics, Working Paper Series qt2466n61j, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    20. Sevilla, J.P. & Stawasz, Andrew & Burnes, Daria & Poulsen, Peter Bo & Sato, Reiko & Bloom, David E., 2019. "Indirect costs of adult pneumococcal disease and productivity-based rate of return to PCV13 vaccination for older adults and elderly diabetics in Denmark," The Journal of the Economics of Ageing, Elsevier, vol. 14(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04614-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.