IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i1d10.1007_s11069-016-2214-3.html
   My bibliography  Save this article

Multi-hazard failure probability analysis of gas pipelines for earthquake shaking, ground failure and fire following earthquake

Author

Listed:
  • Babak Omidvar

    (University of Tehran)

  • Hamid Karimi Kivi

    (University of Tehran)

Abstract

This paper was aimed to provide a quantitative failure probability analysis for multiple hazards. To achieve this, the 1724-kPa (250 Psi) gas pipelines of one of the district neighborhoods of Tehran metropolitan are analyzed to establish the probability of damage against earthquake, fire and liquefaction as a multi-hazard case study. The pipeline is approximately 4 km long and is divided into 14 segments, each of which has 300 m length. We used probabilistic analysis to identify the sources of earthquakes in the area. We calculated the probability that an earthquake with a given maximum magnitude will occur, the probability of liquefaction, that of post-earthquake fires, and the probability of pipeline failure for each segment. In order to take into account uncertainty in the location of epicenters, different points on the North Ray fault were randomly selected as epicenters, and the analysis was carried out for each point. Finally, based on the proposed method, the upper bound of failure probability of the main pipeline resulting from multiple hazards was estimated to be 65.7 %. If ductile pipelines were installed, this amount could be reduced to 32.7 % which shows a reduction of 51.79 % of the upper bound of failure probability.

Suggested Citation

  • Babak Omidvar & Hamid Karimi Kivi, 2016. "Multi-hazard failure probability analysis of gas pipelines for earthquake shaking, ground failure and fire following earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 703-720, May.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2214-3
    DOI: 10.1007/s11069-016-2214-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2214-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2214-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Restrepo, Carlos E. & Simonoff, Jeffrey S. & Zimmerman, Rae, 2009. "Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 38-50.
    2. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
    3. Theresa Jefferson & Jack Harrald & Frank Fiedrich, 2012. "Linking infrastructure resilience to response requirements: the New Madrid Seismic Zone case," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 8(1), pages 22-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Tagle, Andres & Lewis, Austin D. & Schell, Colin A. & Lever, Ernest & Groth, Katrina M., 2022. "BaNTERA: A Bayesian Network for Third-Party Excavation Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Zheng He & Negar Elhami Khorasani, 2022. "Identification and hierarchical structure of cause factors for fire following earthquake using data mining and interpretive structural modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 947-976, May.
    3. Tomoaki Nishino, 2023. "Probabilistic urban cascading multi-hazard risk assessment methodology for ground shaking and post-earthquake fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3165-3200, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaezi, Ali & Verma, Manish, 2018. "Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 98-111.
    2. Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    3. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    4. Chaofeng Shao & Juan Yang & Xiaogang Tian & Meiting Ju & Lei Huang, 2013. "Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks," IJERPH, MDPI, vol. 10(4), pages 1-22, April.
    5. Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
    6. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    7. Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    9. Insang Yu & Kiyong Park & Eui Hoon Lee, 2021. "Flood Risk Analysis by Building Use in Urban Planning for Disaster Risk Reduction and Climate Change Adaptation," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    10. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    11. Christoph Aubrecht & Sven Fuchs & Clemens Neuhold, 2013. "Spatio-temporal aspects and dimensions in integrated disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1205-1216, September.
    12. Ramona ȚIGĂNAȘU & Alina NICUȚĂ, 2022. "Shocks, hazard risk management and resilience from an institutional outlook: what lessons for a (smart) city?," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13(4), pages 329-346, January.
    13. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    14. Johanna Ludvigsen & Ronny Klæboe, 2014. "Extreme weather impacts on freight railways in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 767-787, January.
    15. Alana M. Weir & Thomas M. Wilson & Mark S. Bebbington & Sarah Beaven & Teresa Gordon & Craig Campbell-Smart & Stuart Mead & James H. Williams & Roger Fairclough, 2024. "Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9327-9360, August.
    16. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Ting Wang & Linsheng Yang & Shaohong Wu & Jiangbo Gao & Binggan Wei, 2020. "Quantitative Assessment of Natural Disaster Coping Capacity: An Application for Typhoons," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    18. Mieko Kumasaki & Malcolm King & Mitsuru Arai & Lili Yang, 2016. "Anatomy of cascading natural disasters in Japan: main modes and linkages," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1425-1441, February.
    19. Stefan Hochrainer-Stigler & Robert Šakić Trogrlić & Karina Reiter, 2024. "Fiscal resilience over time and its management in the context of multi-risks: an application to the Danube Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 12163-12180, October.
    20. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:1:d:10.1007_s11069-016-2214-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.