IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i3p2081-2103.html
   My bibliography  Save this article

The impact of interpersonal pre-warning information dissemination on regional emergency evacuation

Author

Listed:
  • N. Zhang
  • X. Ni
  • H. Huang
  • J. Zhao
  • M. Duarte
  • J. Zhang

Abstract

Interpersonal pre-warning information dissemination among members of the population plays a critical role in serious emergencies such as tsunami, chemical leakage and terrorist attacks as there is no sufficient time for government agencies to notify all of the possibly influenced people within a disaster area. In this paper, we established an interpersonal pre-warning information dissemination model based on human visual and auditory senses to simulate how persons get information and evacuate from their residences or places of work to emergency shelters. Regional evacuation was simulated based on interpersonal evacuation information dissemination by combining twelve subjective and objective influencing factors. Through sensitivity analyses of each parameter including door’s status (open/closed) and personal states (with/without exclamation), sound attenuation caused by story’s slab, background sound, number of information sources, personal curiosity threshold and the probability a person will believe in the information, we propose several suggestions to optimize evacuation information dissemination and regional evacuation. This model can be used to make evacuation plan under the condition of insufficient responding time or paralyzed information networks. The results provide useful references for governmental decision making toward disaster pre-warning and efficient regional evacuation in metropolises. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • N. Zhang & X. Ni & H. Huang & J. Zhao & M. Duarte & J. Zhang, 2016. "The impact of interpersonal pre-warning information dissemination on regional emergency evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2081-2103, February.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:2081-2103
    DOI: 10.1007/s11069-015-2062-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-2062-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-2062-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    2. Sammy Zahran & Daniele Tavani & Stephan Weiler, 2013. "Daily Variation in Natural Disaster Casualties: Information Flows, Safety, and Opportunity Costs in Tornado Versus Hurricane Strikes," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1265-1280, July.
    3. Nan Zhang & Hong Huang & Boni Su & Hui Zhang, 2013. "Population evacuation analysis: considering dynamic population vulnerability distribution and disaster information dissemination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1629-1646, December.
    4. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, N. & Huang, H. & Su, Boni, 2016. "Comprehensive analysis of information dissemination in disasters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 846-857.
    2. Zhang, N. & Ni, X.Y. & Huang, H. & Duarte, M., 2017. "Risk-based personal emergency response plan under hazardous gas leakage: Optimal information dissemination and regional evacuation in metropolises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 237-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Zhang & X. Y. Ni & H. Huang & J. L. Zhao & M. Duarte & J. Zhang, 2016. "The impact of interpersonal pre-warning information dissemination on regional emergency evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2081-2103, February.
    2. Zhang, N. & Huang, H. & Su, Boni, 2016. "Comprehensive analysis of information dissemination in disasters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 846-857.
    3. Zhang, N. & Ni, X.Y. & Huang, H. & Duarte, M., 2017. "Risk-based personal emergency response plan under hazardous gas leakage: Optimal information dissemination and regional evacuation in metropolises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 237-250.
    4. Wei Zhang & Jianzhong Zhou & Yi Liu & Xiao Chen & Chao Wang, 2016. "Emergency evacuation planning against dike-break flood: a GIS-based DSS for flood detention basin of Jingjiang in central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1283-1301, March.
    5. Wei Zhang & Jianzhong Zhou & Yi Liu & Xiao Chen & Chao Wang, 2016. "Emergency evacuation planning against dike-break flood: a GIS-based DSS for flood detention basin of Jingjiang in central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1283-1301, March.
    6. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    7. Hemant Gehlot & Arif M. Sadri & Satish V. Ukkusuri, 2019. "Joint modeling of evacuation departure and travel times in hurricanes," Transportation, Springer, vol. 46(6), pages 2419-2440, December.
    8. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    9. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    10. Alexandre Mornet & Thomas Opitz & Michel Luzi & Stéphane Loisel, 2015. "Index for Predicting Insurance Claims from Wind Storms with an Application in France," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2029-2056, November.
    11. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    12. Yudi Zhang & Lei He, 2022. "Research on the Characteristics and Influencing Factors of Community Residents’ Night Evacuation Behavior Based on Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    13. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    14. Junji Urata & Adam J. Pel, 2018. "People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 889-905, May.
    15. Shi An & Ze Wang & Jianxun Cui, 2015. "Integrating Regret Psychology to Travel Mode Choice for a Transit-Oriented Evacuation Strategy," Sustainability, MDPI, vol. 7(7), pages 1-16, June.
    16. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    17. Hector R. Lim & Ma. Bernadeth B. Lim & Ann Wendy M. Rojas, 2022. "Towards modelling of evacuation behavior and planning for emergency logistics due to the Philippine Taal Volcanic eruption in 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 553-581, October.
    18. Grajdura, Sarah & Niemeier, Deb, 2022. "Improving Our Understanding of Fire Evacuation and Displacement Effects," Institute of Transportation Studies, Working Paper Series qt6h99c6j0, Institute of Transportation Studies, UC Davis.
    19. Ma. Lim & Hector Lim & Mongkut Piantanakulchai & Francis Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    20. Yamada, Takashi, 2022. "Generalizing the probability of reaching a destination in case of route blockage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:2081-2103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.